A Novel Graph Kernel Based on the Wasserstein Distance and Spectral Signatures

被引:0
作者
Liu, Yantao [1 ,2 ]
Rossi, Luca [2 ]
Torsello, Andrea [3 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Queen Mary Univ London, London, England
[3] Ca Foscari Univ Venice, Venice, Italy
来源
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022 | 2022年 / 13813卷
关键词
Graph kernel; Wasserstein distance; Spectral signature;
D O I
10.1007/978-3-031-23028-8_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral signatures have been used with great success in computer vision to characterise the local and global topology of 3D meshes. In this paper, we propose to use two widely used spectral signatures, the Heat Kernel Signature and the Wave Kernel Signature, to create node embeddings able to capture local and global structural information for a given graph. For each node, we concatenate its structural embedding with the one-hot encoding vector of the node feature (if available) and we define a kernel between two input graphs in terms of the Wasserstein distance between the respective node embeddings. Experiments on standard graph classification benchmarks show that our kernel performs favourably when compared to widely used alternative kernels as well as graph neural networks.
引用
收藏
页码:122 / 131
页数:10
相关论文
共 33 条
  • [1] Altschuler J, 2017, ADV NEUR IN, V30
  • [2] Atwood J, 2016, ADV NEUR IN, V29
  • [3] Aubry M, 2011, IEEE I CONF COMP VIS, P1411, DOI 10.1109/ICCV.2011.6126396
  • [4] A quantum Jensen-Shannon graph kernel for unattributed graphs
    Bai, Lu
    Rossi, Luca
    Torsello, Andrea
    Hancock, Edwin R.
    [J]. PATTERN RECOGNITION, 2015, 48 (02) : 344 - 355
  • [5] Graph Kernels from the Jensen-Shannon Divergence
    Bai, Lu
    Hancock, Edwin R.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 47 (1-2) : 60 - 69
  • [6] Shortest-path kernels on graphs
    Borgwardt, KM
    Kriegel, HP
    [J]. Fifth IEEE International Conference on Data Mining, Proceedings, 2005, : 74 - 81
  • [7] Protein function prediction via graph kernels
    Borgwardt, KM
    Ong, CS
    Schönauer, S
    Vishwanathan, SVN
    Smola, AJ
    Kriegel, HP
    [J]. BIOINFORMATICS, 2005, 21 : I47 - I56
  • [8] Cosmo Luca, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12365), P1, DOI 10.1007/978-3-030-58565-5_1
  • [9] Cosmo L, 2024, Arxiv, DOI arXiv:2112.07436
  • [10] 3D Shape Analysis Through a Quantum Lens: the Average Mixing Kernel Signature
    Cosmo, Luca
    Minello, Giorgia
    Bronstein, Michael
    Rodola, Emanuele
    Rossi, Luca
    Torsello, Andrea
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (06) : 1474 - 1493