Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell

被引:21
|
作者
Xu, Lei [1 ,2 ]
Yu, Wenzheng [1 ]
Graham, Nigel [3 ]
Zhao, Yaqian [2 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China
[2] Univ Coll Dublin, Ctr Water Resources Res, Sch Civil Engn, Dublin 4, Ireland
[3] Imperial Coll London, Dept Civil & Environm Engn, South Kensington Campus, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Constructed wetland; Bioelectrochemical system; Organic sensing; Normalization; Anodic material; Chemical shock; WASTE-WATER TREATMENT; TOXICITY; BATCH;
D O I
10.1016/j.chemosphere.2020.128532
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bioelectrochemical system (BES) based biosensors for organic sensing has long been investigated. However, there is no uniform criterion to evaluate directly the performance of the BES based biosensors due to their different scale. Here, for the first time, we show that the normalized maximum detection range (NMDR) and normalized sensing time (NST) can potentially be used as the two criteria in BES based biosensors for organic sensing. Thereafter, the recently emerged, relatively larger scale BES (i.e. constructed wetland-microbial fuel cell, CW-MFC) was specifically examined in this study. The biocathode formation and the influence of anodic material on sensor performance were systematically evaluated. The system with metal-based anode was found to produce a more stable and quicker response (low NST) than that with carbon-based anode. Significantly, the continuous loading mode was found to greatly reduce the NMDR compared to the batch mode, and the hydraulic residence time (HRT) is the critical factor determining the NMDR. Furthermore, it was found that the electrical signals generated from the CW-MFC system were insignificantly influenced by some specific chemical disturbances, such as Cu2+ and herbicide. Therefore, normalized toxicity (NT) is suggested to be considered in BES based biosensor. However, for chemicals with higher reduction potentials (NO3- in this work), the system presented a high response, enabling its potential for monitoring NO3- in effluents or groundwater. This study can hopefully contribute to further development of the sustainable BES based biosensors in CW. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The salinity effects on the performance of a constructed wetland-microbial fuel cell
    Villasenor Camacho, J.
    Rodriguez Romero, L.
    Fernandez Marchante, C. M.
    Fernandez Morales, F. J.
    Rodrigo Rodrigo, M. A.
    ECOLOGICAL ENGINEERING, 2017, 107 : 1 - 7
  • [2] Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell
    Xu, Fei
    Cao, Fu-qian
    Kong, Qiang
    Zhou, Lu-lu
    Yuan, Qing
    Zhu, Ya-jie
    Wang, Qian
    Du, Yuan-da
    Wang, Zhi-de
    CHEMICAL ENGINEERING JOURNAL, 2018, 339 : 479 - 486
  • [3] Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation
    Gonzalez, Thais
    Puigagut, Jaume
    Vidal, Gladys
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 753
  • [4] Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell
    Wang, Guozhen
    Guo, Yating
    Cai, Jiaying
    Wen, Hongyu
    Mao, Zhen
    Zhang, Hao
    Wang, Xin
    Ma, Lei
    Zhu, Mengqin
    RSC ADVANCES, 2019, 9 (37) : 21460 - 21472
  • [5] Treatment mechanism of hexavalent chromium wastewater in constructed wetland-microbial fuel cell coupling system
    Shi, Yucui
    Tang, Gang
    You, Shaohong
    Jiang, Pingping
    Zhang, Xuehong
    Deng, Zhenliang
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [6] Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater
    Xu, Fei
    Ouyang, De-long
    Rene, Eldon R.
    Ng, How Yong
    Guo, Ling-ling
    Zhu, Ya-jie
    Zhou, Lu-lu
    Yuan, Qing
    Miao, Ming-sheng
    Wang, Qian
    Kong, Qiang
    BIORESOURCE TECHNOLOGY, 2019, 288
  • [7] A taxonomy of design factors in constructed wetland-microbial fuel cell performance: A review
    Ebrahimi, Atieh
    Sivakumar, Muttucumaru
    McLauchlan, Craig
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 291
  • [8] Enhanced Swine Wastewater Treatment by Constructed Wetland-Microbial Fuel Cell Systems
    Zhang, Yun
    Liu, Feng
    Lin, Yidong
    Sun, Lei
    Guo, Xinru
    Yang, Shuai
    He, Jinlong
    WATER, 2022, 14 (23)
  • [9] Assessing the factors influencing the performance of constructed wetland-microbial fuel cell integration
    Huang, Jingyu
    Miwornunyuie, Nicholas
    Ewusi-Mensah, David
    Koomson, Desmond Ato
    WATER SCIENCE AND TECHNOLOGY, 2020, 81 (04) : 631 - 643
  • [10] Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis
    Ji, Bin
    Zhao, Yaqian
    Vymazal, Jan
    Mander, Ulo
    Lust, Rauno
    Tang, Cheng
    CHEMOSPHERE, 2021, 262