On the Littlewood conjecture in simultaneous diophantine approximation

被引:18
作者
Adamczewski, Boris
Bugeaud, Yann
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2006年 / 73卷
关键词
D O I
10.1112/S0024610706022617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any given real number alpha with bounded partial quotients, we construct explicitly continuum many real numbers beta with bounded partial quotients for which the pair (alpha,beta) satisfies a strong form of the Littlewood conjecture. Our proof is elementary and rests on the basic theory of continued fractions.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 10 条
[1]   ON THE PRODUCT OF 3 HOMOGENEOUS LINEAR FORMS AND INDEFINITE TERNARY QUADRATIC FORMS [J].
CASSELS, JWS ;
SWINNERTONDYER, HPF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 248 (940) :73-96
[2]  
Davenport H., 1963, MICH MATH J, V10, P157
[3]  
Davenport H., 1963, MICH MATH J, V10, P311, DOI 10.1307/mmj/1028998917
[4]  
de Mathan, 2003, J THEOR NOMBR BORDX, V13, P249
[5]   CONTINUED FRACTIONS AND FOURIER-TRANSFORMS [J].
KAUFMAN, R .
MATHEMATIKA, 1980, 27 (54) :262-267
[6]  
Margulis G., 2000, Mathematics: Frontiers and Perspectives, P161
[7]   On a problem in simultaneous Diophantine approximation: Littlewood's conjecture [J].
Pollington, AD ;
Velani, SL .
ACTA MATHEMATICA, 2000, 185 (02) :287-306
[8]   Transcendence of Thue-Morse continued fractions [J].
Queffélec, M .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :201-211
[9]  
[No title captured]
[10]  
[No title captured]