Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land

被引:30
作者
Romani, Facundo [1 ]
Reinheimer, Renata [2 ]
Florent, Stevie N. [3 ]
Bowman, John L. [3 ]
Moreno, Javier E. [1 ]
机构
[1] Univ Nacl Litoral, Fac Bioquim & Ciencias Biol, Ctr Cient Tecnol CONICET Santa Fe, Inst Agrobiotecnol Litoral,CONICET, Colectora Ruta Nacl 168 Km 0, RA-3000 Paraje El Pozo, Sante Fe, Argentina
[2] Univ Nacl Litoral, Fac Ciencias Agr, Ctr Cient Tecnol CONICET Santa Fe, Inst Agrobiotecnol Litoral,CONICET, Colectora Ruta Nacl 168 Km 0, RA-3000 Paraje El Pozo, Sante Fe, Argentina
[3] Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
development; domain architecture; evolution; HD-Zip; land colonization; transcription factors; HD-ZIP; GENE FAMILY; DNA-BINDING; CLASS-I; ARABIDOPSIS; SEQUENCE; ORIGIN; TERRESTRIAL; PROTEIN; DOMAIN;
D O I
10.1111/nph.15133
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant transition to land required several regulatory adaptations. The mechanisms behind these changes remain unknown. Since the evolution of transcription factors (TFs) families accompanied this transition, we studied the HOMEODOMAIN LEUCINE ZIPPER (HDZ) TF family known to control key developmental and environmental responses. We performed a phylogenetic and bioinformatics analysis of HDZ genes using transcriptomic and genomic datasets from a wide range of Viridiplantae species. We found evidence for the existence of HDZ genes in chlorophytes and early-divergent charophytes identifying several HDZ members belonging to the four known classes (I-IV). Furthermore, we inferred a progressive incorporation of auxiliary motifs. Interestingly, most of the structural features were already present in ancient lineages. Our phylogenetic analysis inferred that the origin of classes I, III, and IV is monophyletic in land plants in respect to charophytes. However, class IIHDZ genes have two conserved lineages in charophytes and mosses that differ in the CPSCE motif. Our results indicate that the HDZ family was already present in green algae. Later, the HDZ family expanded accompanying critical plant traits. Once on land, the HDZ family experienced multiple duplication events that promoted fundamental neo- and subfunctionalizations for terrestrial life.
引用
收藏
页码:408 / 421
页数:14
相关论文
共 71 条
  • [1] The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis
    Alva, Vikram
    Nam, Seung-Zin
    Soeding, Johannes
    Lupas, Andrei N.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W410 - W415
  • [2] Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity
    Arce, Agustin L.
    Raineri, Jesica
    Capella, Matas
    Cabello, Julieta V.
    Chan, Raquel L.
    [J]. BMC PLANT BIOLOGY, 2011, 11
  • [3] The true story of the HD-Zip family
    Ariel, Federico D.
    Manavella, Pablo A.
    Dezar, Carlos A.
    Chan, Raquel L.
    [J]. TRENDS IN PLANT SCIENCE, 2007, 12 (09) : 419 - 426
  • [4] Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome
    Bowman, John L.
    Kohchi, Takayuki
    Yamato, Katsuyuki T.
    Jenkins, Jerry
    Shu, Shengqiang
    Ishizaki, Kimitsune
    Yamaoka, Shohei
    Nishihama, Ryuichi
    Nakamura, Yasukazu
    Berger, Frederic
    Adam, Catherine
    Aki, Shiori Sugamata
    Althoff, Felix
    Araki, Takashi
    Arteaga-Vazquez, Mario A.
    Balasubrmanian, Sureshkumar
    Barry, Kerrie
    Bauer, Diane
    Boehm, Christian R.
    Briginshaw, Liam
    Caballero-Perez, Juan
    Catarino, Bruno
    Chen, Feng
    Chiyoda, Shota
    Chovatia, Mansi
    Davies, Kevin M.
    Delmans, Mihails
    Demura, Taku
    Dierschke, Tom
    Dolan, Liam
    Dorantes-Acosta, Ana E.
    Eklund, D. Magnus
    Florent, Stevie N.
    Flores-Sandoval, Eduardo
    Fujiyama, Asao
    Fukuzawa, Hideya
    Galik, Bence
    Grimanelli, Daniel
    Grimwood, Jane
    Grossniklaus, Ueli
    Hamada, Takahiro
    Haseloff, Jim
    Hetherington, Alexander J.
    Higo, Asuka
    Hirakawa, Yuki
    Hundley, Hope N.
    Ikeda, Yoko
    Inoue, Keisuke
    Inoue, Shin-Ichiro
    Ishida, Sakiko
    [J]. CELL, 2017, 171 (02) : 287 - +
  • [5] Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment
    Brandt, Ronny
    Cabedo, Marc
    Xie, Yakun
    Wenkel, Stephan
    [J]. JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2014, 56 (06) : 518 - 526
  • [6] Diversification of a Transcription Factor Family Led to the Evolution of Antagonistically Acting Genetic Regulators of Root Hair Growth
    Breuninger, Holger
    Thamm, Anna
    Streubel, Susanna
    Sakayama, Hidetoshi
    Nishiyama, Tomoaki
    Dolan, Liam
    [J]. CURRENT BIOLOGY, 2016, 26 (12) : 1622 - 1628
  • [7] Homeodomain proteins: an update
    Buerglin, Thomas R.
    Affolter, Markus
    [J]. CHROMOSOMA, 2016, 125 (03) : 497 - 521
  • [8] BLAST plus : architecture and applications
    Camacho, Christiam
    Coulouris, George
    Avagyan, Vahram
    Ma, Ning
    Papadopoulos, Jason
    Bealer, Kevin
    Madden, Thomas L.
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [9] Capella M., 2016, PLANT TRANSCRIPTION, P113, DOI DOI 10.1016/B978-0-12-800854-6.00007-5
  • [10] Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB
    Capella, Matias
    Re, Delfina A.
    Arce, Agustin L.
    Chan, Raquel L.
    [J]. PLANT CELL REPORTS, 2014, 33 (06) : 955 - 967