Quantum Quenches in Chern Insulators

被引:145
|
作者
Caio, M. D. [1 ]
Cooper, N. R. [2 ]
Bhaseen, M. J. [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Univ Cambridge, Cavendish Lab, TCM Grp, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
DIRAC POINTS; EDGE STATES; REALIZATION; LATTICES; SYSTEMS; MODEL;
D O I
10.1103/PhysRevLett.115.236403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the nonequilibrium response of Chern insulators. Focusing on the Haldane model, we study the dynamics induced by quantum quenches between topological and nontopological phases. A notable feature is that the Chern number, calculated for an infinite system, is unchanged under the dynamics following such a quench. However, in finite geometries, the initial and final Hamiltonians are distinguished by the presence or absence of edge modes. We study the edge excitations and describe their impact on the experimentally observable edge currents and magnetization. We show that, following a quantum quench, the edge currents relax towards new equilibrium values, and that there is light-cone spreading of the currents into the interior of the sample.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Quantum-metric-induced quantum Hall conductance inversion and reentrant transition in fractional Chern insulators
    Theoretical Division, T-4, Los Alamos National Laboratory , Los Alamos
    NM
    87545, United States
    不详
    MI
    48109, United States
    不详
    NM
    87545, United States
    不详
    NM
    87545, United States
    Phys. Rev. Res., 2643, 3
  • [42] Inhomogeneous quantum quenches
    Sotiriadis, Spyros
    Cardy, John
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [43] Double Perovskite Heterostructures: Magnetism, Chern Bands, and Chern Insulators
    Cook, Ashley M.
    Paramekanti, Arun
    PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [44] Haldane statistics for fractional Chern insulators with an arbitrary Chern number
    Wu, Yang-Le
    Regnault, N.
    Bernevig, B. Andrei
    PHYSICAL REVIEW B, 2014, 89 (15):
  • [45] Measurement of the Chern number for non-Hermitian Chern insulators
    Liu, Hongfang
    Lu, Ming
    Chai, Shengdu
    Zhang, Zhi-Qiang
    Jiang, Hua
    PHYSICAL REVIEW B, 2024, 109 (15)
  • [46] Dynamical preparation of Floquet Chern insulators
    D'Alessio, Luca
    Rigol, Marcos
    NATURE COMMUNICATIONS, 2015, 6
  • [47] Fractional Chern insulators and the W∞ algebra
    Parameswaran, S. A.
    Roy, R.
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2012, 85 (24):
  • [48] Topological marker currents in Chern insulators
    Caio, M. D.
    Moller, G.
    Cooper, N. R.
    Bhaseen, M. J.
    NATURE PHYSICS, 2019, 15 (03) : 257 - 261
  • [49] Acoustic Valley Spin Chern Insulators
    Zhu, Zhenxiao
    Yan, Mou
    Pan, Jincheng
    Yang, Yating
    Deng, Weiyin
    Lu, Jiuyang
    Huang, Xueqin
    Liu, Zhengyou
    PHYSICAL REVIEW APPLIED, 2021, 16 (01)
  • [50] Chern band insulators in a magnetic field
    Araujo, Miguel A. N.
    Castro, Eduardo V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (07)