Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions

被引:7
作者
Giannetti, Flavia [1 ]
di Napoli, Antonia Passarelli [1 ]
Tachikawa, Atsushi [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
基金
日本学术振兴会;
关键词
Boundary regularity; non-standard growth; non-autonomous functionals; ELLIPTIC-SYSTEMS; MINIMIZERS; P(X)-ENERGY;
D O I
10.1515/forum-2019-0039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove partial and full boundary Holder continuity, under a suitable regularity on the boundary datum, of the minimizers of non-autonomous integral functionals of the type integral(Omega) Phi((A(ij)(alpha beta) (x, u) D(i)u(alpha) D(j)u(beta))(1/2)) dx, where Omega subset of R-n is a bounded domain, Phi(t) = t(p )log(alpha)(e + t) with 1 < p <= n and alpha > 0, and A(x, s) = (A(ij)(alpha beta)(x, s)) is a uniformly elliptic, bounded and continuous function.
引用
收藏
页码:1027 / 1050
页数:24
相关论文
共 27 条
[1]  
[Anonymous], 2002, Atti Sem. Mat. Fis. Univ. Modena
[2]  
[Anonymous], 1998, Rend. Mat. Appl.
[3]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[4]  
[Anonymous], 1984, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[5]  
Cianchi A, 1999, J REINE ANGEW MATH, V507, P15
[6]   Existence and regularity results for a class of equations with logarithmic growth [J].
di Napoli, Antonia Passarelli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :290-309
[7]   Fractional estimates for non-differentiable elliptic systems with general growth [J].
Diening, Lars ;
Ettwein, Frank .
FORUM MATHEMATICUM, 2008, 20 (03) :523-556
[8]   LIPSCHITZ REGULARITY FOR SOME ASYMPTOTICALLY CONVEX PROBLEMS [J].
Diening, Lars ;
Stroffolini, Bianca ;
Verde, Anna .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (01) :178-189
[9]  
Duzaar F, 2004, J CONVEX ANAL, V11, P437