Deformed exponentials and portfolio selection

被引:5
作者
Rodrigues, Ana Flavia P. [1 ]
Guerreiro, Igor M. [1 ]
Cavalcante, Charles Casimiro [1 ]
机构
[1] Univ Fed Ceara, Teleinformat Engn Dept, Campus Pici,Bloco 722,CP 6005, BR-60440900 Fortaleza, Ceara, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2018年 / 29卷 / 03期
关键词
Deformed exponential; q-Gaussian; portfolio selection; mean-divergence model; STATISTICAL-MECHANICS; FAMILIES; GEOMETRY; LOGARITHMS;
D O I
10.1142/S0129183118500298
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a method for portfolio selection based on the consideration on deformed exponentials in order to generalize the methods based on the gaussianity of the returns in portfolio, such as the Markowitz model. The proposed method generalizes the idea of optimizing mean-variance and mean-divergence models and allows a more accurate behavior for situations where heavy-tails distributions are necessary to describe the returns in a given time instant, such as those observed in economic crises. Numerical results show the proposed method outperforms the Markowitz portfolio for the cumulated returns with a good convergence rate of the weights for the assets which are searched by means of a natural gradient algorithm.
引用
收藏
页数:17
相关论文
共 43 条
[22]   Option pricing under deformed Gaussian distributions [J].
Moretto, Enrico ;
Pasquali, Sara ;
Trivellato, Barbara .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 446 :246-263
[23]  
Naudts J, 2011, GENERALISED THERMOSTATISTICS, P1, DOI 10.1007/978-0-85729-355-8
[24]   Deformed exponentials and logarithms in generalized thermostatistics [J].
Naudts, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 316 (1-4) :323-334
[25]  
Naudts Jan, 2010, Journal of Physics: Conference Series, V201, DOI 10.1088/1742-6596/201/1/012003
[26]  
Naudts J., 2004, J Inequal Pure Appl Math, V5, P102
[27]  
Naudts J., 2013, GEOMETRIC SCI INFORM
[28]  
Naudts J., ARXIVCONDMAT0405508V
[29]   Generalised Exponential Families and Associated Entropy Functions [J].
Naudts, Jan .
ENTROPY, 2008, 10 (03) :131-149
[30]   An infinite-dimensional statistical manifold modelled on Hilbert space [J].
Newton, Nigel J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1661-1681