Anode-Free Sodium Battery through in Situ Plating of Sodium Metal

被引:295
作者
Cohn, Adam P. [1 ]
Muralidharan, Nitin [2 ]
Carter, Rachel [1 ]
Share, Keith [2 ]
Pint, Cary L. [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Interdisciplinary Mat Sci Program, 221 Kirkland Hall, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
Metal anode; iron pyrite; sodium battery; current collector; energy density; anode-free; CURRENT COLLECTOR; LITHIUM; DEPOSITION; LI; STABILITY; DENSITY;
D O I
10.1021/acs.nanolett.6b05174
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) have been pursued as a more cost-effective and more sustainable alternative to lithium-ion batteries (LIBs), but these advantages come at the expense of energy density. In this work, we demonstrate that the challenge of energy density for sodium chemistries can be overcome through an anode free architecture enabled by the use of a nanocarbon nucleation layer formed on Al current collectors. Electrochemical studies show this configuration to provide highly stable and efficient plating and stripping of sodium metal over a range of currents up to 4 mA/cm(2), sodium loading up to 12 mAh/cm(2), and with long-term durability exceeding 1000 cycles at a current of 0.5 mA/cm2. Building upon this anode-free architecture, we demonstrate a full cell using a pre-sodiated pyrite cathode to achieve energy densities of similar to 400 Wh/kg, far surpassing recent reports on SIBs and even the theoretical maximum for LIB technology (387 Wh/kg for LiCoO2/graphite cells) while still relying on naturally abundant raw materials and cost-effective aqueous processing.
引用
收藏
页码:1296 / 1301
页数:6
相关论文
共 36 条
[1]   Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance [J].
Bae, Chang-Jun ;
Erdonmez, Can K. ;
Halloran, John W. ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1254-1258
[2]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[3]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[4]   Enabling room temperature sodium metal batteries [J].
Cao, Ruiguo ;
Mishra, Kuber ;
Li, Xiaolin ;
Qian, Jiangfeng ;
Engelhard, Mark H. ;
Bowden, Mark E. ;
Han, Kee Sung ;
Mueller, Karl T. ;
Henderson, Wesley A. ;
Zhang, Ji-Guang .
NANO ENERGY, 2016, 30 :825-830
[5]   Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene [J].
Cohn, Adam P. ;
Share, Keith ;
Carter, Rachel ;
Oakes, Landon ;
Pint, Cary L. .
NANO LETTERS, 2016, 16 (01) :543-548
[6]   Exceptional energy and new insight with a sodium-selenium battery based on a carbon nanosheet cathode and a pseudographite anode [J].
Ding, Jia ;
Zhou, Hui ;
Zhang, Hanlei ;
Stephenson, Tyler ;
Li, Zhi ;
Karpuzov, Dimitre ;
Mitlin, David .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (01) :153-165
[7]  
Hartmann P, 2013, NAT MATER, V12, P228, DOI [10.1038/nmat3486, 10.1038/NMAT3486]
[8]   Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries [J].
Hu, Zhe ;
Zhu, Zhiqiang ;
Cheng, Fangyi ;
Zhang, Kai ;
Wang, Jianbin ;
Chen, Chengcheng ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (04) :1309-1316
[9]   On the Comparative Stability of Li and Na Metal Anode Interfaces in Conventional Alkyl Carbonate Electrolytes [J].
Iermakova, D. I. ;
Dugas, R. ;
Palacin, M. R. ;
Ponrouch, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (13) :A7060-A7066
[10]   Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments [J].
Kazyak, Eric ;
Wood, Kevin N. ;
Dasgupta, Neil P. .
CHEMISTRY OF MATERIALS, 2015, 27 (18) :6457-6462