The Geometry of Abstraction in the Hippocampus and Prefrontal Cortex

被引:189
作者
Bernardi, Silvia [2 ,3 ,5 ,8 ]
Benna, Marcus K. [1 ,4 ,5 ,9 ]
Rigotti, Mattia [7 ]
Munuera, Jerome [1 ,10 ]
Fusi, Stefano [1 ,4 ,5 ,6 ]
Salzman, C. Daniel [1 ,2 ,5 ,6 ,8 ]
机构
[1] Columbia Univ, Dept Neurosci, New York, NY 10027 USA
[2] Columbia Univ, Dept Psychiat, New York, NY 10027 USA
[3] Res Fdn Mental Hyg, Menands, NY USA
[4] Columbia Univ, Ctr Theoret Neurosci, New York, NY 10027 USA
[5] Columbia Univ, Mortimer B Zuckerman Mind Brain Behav Inst, New York, NY 10027 USA
[6] Columbia Univ, Kavli Inst Brain Sci, New York, NY 10027 USA
[7] IBM Res AI, Yorktown Hts, NY USA
[8] New York State Psychiat Inst & Hosp, New York, NY 10032 USA
[9] Univ Calif San Diego, Div Biol Sci, Neurobiol Sect, La Jolla, CA 92093 USA
[10] Sorbonne Univ, AP HP, Inst Cerveau, Paris Brain Inst,ICM,INSERM,CNRS, Paris, France
关键词
MIXED SELECTIVITY; OBJECT RECOGNITION; SINGLE NEURONS; REPRESENTATIONS; INFORMATION; KNOWLEDGE; DYNAMICS;
D O I
10.1016/j.cell.2020.09.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The curse of dimensionality plagues models of reinforcement learning and decision making. The process of abstraction solves this by constructing variables describing features shared by different instances, reducing dimensionality and enabling generalization in novel situations. Here, we characterized neural representations in monkeys performing a task described by different hidden and explicit variables. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training, which requires a particular geometry of neural representations. Neural ensembles in prefrontal cortex, hippocampus, and simulated neural networks simultaneously represented multiple variables in a geometry reflecting abstraction but that still allowed a linear classifier to decode a large number of other variables (high shattering dimensionality). Furthermore, this geometry changed in relation to task events and performance. These findings elucidate how the brain and artificial systems represent variables in an abstract format while preserving the advantages conferred by high shattering dimensionality.
引用
收藏
页码:954 / +
页数:35
相关论文
共 62 条
[1]  
[Anonymous], 2010, Dynamic Programming
[2]  
[Anonymous], 2000, P INT C MACH LEARN
[3]   Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories [J].
Antzoulatos, Evan G. ;
Miller, Earl K. .
NEURON, 2011, 71 (02) :243-249
[4]   The Sparseness of Mixed Selectivity Neurons Controls the Generalization-Discrimination Trade-Off [J].
Barak, Omri ;
Rigotti, Mattia ;
Fusi, Stefano .
JOURNAL OF NEUROSCIENCE, 2013, 33 (09) :3844-3856
[5]  
Barto AG, 2003, DISCRETE EVENT DYN S, V13, P343
[6]   What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior [J].
Behrens, Timothy E. J. ;
Muller, Timothy H. ;
Whittington, James C. R. ;
Mark, Shirley ;
Baram, Alon B. ;
Stachenfeld, Kimberly L. ;
Kurth-Nelson, Zeb .
NEURON, 2018, 100 (02) :490-509
[7]  
Benna M.K., 2019, BIORXIV, DOI [10.1101/624239, DOI 10.1101/624239.]
[8]   Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions [J].
Buckley, Mark J. ;
Mansouri, Farshad A. ;
Hoda, Hassan ;
Mahboubi, Majid ;
Browning, Philip G. F. ;
Kwok, Sze C. ;
Phillips, Adam ;
Tanaka, Keiji .
SCIENCE, 2009, 325 (5936) :52-58
[9]   The Code for Facial Identity in the Primate Brain [J].
Chang, Le ;
Tsao, Doris Y. .
CELL, 2017, 169 (06) :1013-+
[10]  
Chen T.Q., 2018, 180204942 ARXIV