The pattern of expression of the voltage-gated sodium channels Nav1.8 and Nav1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models

被引:103
作者
Decosterd, I [1 ]
Ji, RR
Abdi, S
Tate, S
Woolf, CJ
机构
[1] CHU Vaudois, Dept Anesthesiol, CH-1011 Lausanne, Switzerland
[2] CHU Vaudois, Div Surg Res, CH-1011 Lausanne, Switzerland
[3] CHU Vaudois, Gene Therapy Ctr, CH-1011 Lausanne, Switzerland
[4] Massachusetts Gen Hosp, Dept Anesthesia & Crit Care, Neural Plast Res Grp, Charlestown, MA 02129 USA
[5] Harvard Univ, Sch Med, Charlestown, MA 02129 USA
[6] GlaxoSmithKline, Discovery Res, Dept Gene Express & Prot Biochem, Stevenage SG1 2NY, Herts, England
关键词
voltage-gated sodium channel; Na(v)1.8; Na(v)1.9; pain; neuropathic pain; nerve injury; dorsal root ganglia;
D O I
10.1016/S0304-3959(01)00456-0
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
A spared nerve injury of the sciatic nerve (SNI) or a segmental lesion of the L5 and L6 spinal nerves (SNL) lead to behavioral signs of neuropathic pain in the territory innervated by adjacent uninjured nerve fibers, while a chronic constriction injury (CCI) results in pain sensitivity in the affected area. While alterations in voltage-gated sodium channels (VGSCs) have been shown to contribute to the generation of ectopic activity in the injured neurons, little is known about changes in VGSCs in the neighboring intact dorsal root ganglion (DRG) neurons, even though these cells begin to fire spontaneously. We have now investigated changes in the expression of the TTX-resistant VGSCs, Na(v)1.8 (SNS/PN3) and Na(v)1.9 (SNS2/NaN) by immunohistochemistry in rat models of neuropathic pain both with an intermingling of intact and degenerated axons in the nerve stump (SNL and CCI) and with a co-mingling in the same DRG of neurons with injured and uninjured axons (sciatic axotomy and SNI). The expression of Na(v)1.8 and Na(v)1.9 protein was abolished in all injured DRG neurons, in all models. In intact DRGs and in neighboring non-injured neurons, the expression and the distribution among the A- and C-fiber neuronal populations of Na(v)1.8 and Na(v)1.9 was, however, unchanged. While it is unlikely, therefore, that a change in the expression of TTX-resistant VGSCs in non-injured neurons contributes to neuropathic pain, it is essential that molecular alterations in both injured and non-injured neurons in neuropathic pain models are investigated. (C) 2002 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:269 / 277
页数:9
相关论文
共 28 条
  • [1] Tetrodotoxin-resistant voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed in the retina
    O'Brien, Brendan J.
    Caldwell, John H.
    Ehring, George R.
    O'Brien, Keely M. Bumsted
    Luo, Songjiang
    Levinson, S. Rock
    JOURNAL OF COMPARATIVE NEUROLOGY, 2008, 508 (06) : 940 - 951
  • [2] Targeting Voltage Gated Sodium Channels NaV1.7, NaV1.8, and NaV1.9 for Treatment of Pathological Cough
    Muroi, Yukiko
    Undem, Bradley J.
    LUNG, 2014, 192 (01) : 15 - 20
  • [3] Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas
    Bird, Emma V.
    Christmas, Claire R.
    Loescher, Alison R.
    Smith, Keith G.
    Robinson, Peter P.
    Black, Joel A.
    Waxman, Stephen G.
    Boissonade, Fiona M.
    MOLECULAR PAIN, 2013, 9
  • [4] Changes in the expression of voltage-gated sodium channels Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in rat trigeminal ganglia following chronic constriction injury
    Xu, Wenhua
    Zhang, Jun
    Wang, Yuanyin
    Wang, Liecheng
    Wang, Xuxia
    NEUROREPORT, 2016, 27 (12) : 929 - 934
  • [5] The voltage-gated sodium channel NaV1.9 in visceral pain
    Hockley, J. R. F.
    Winchester, W. J.
    Bulmer, D. C.
    NEUROGASTROENTEROLOGY AND MOTILITY, 2016, 28 (03) : 316 - 326
  • [6] ABNORMAL EXPRESSION OF VOLTAGE-GATED SODIUM CHANNELS Nav1.7, Nav1.3 AND Nav1.8 IN TRIGEMINAL NEURALGIA
    Siqueira, S. R. D. T.
    Alves, B.
    Malpartida, H. M. G.
    Teixeira, M. J.
    Siqueira, J. T. T.
    NEUROSCIENCE, 2009, 164 (02) : 573 - 577
  • [7] Differential expression of tetrodotoxin-resistant sodium channels NaV1.8 and NaV1.9 in normal and inflamed rats
    Coggeshall, RE
    Tate, S
    Carlton, SM
    NEUROSCIENCE LETTERS, 2004, 355 (1-2) : 45 - 48
  • [8] Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice
    Leo, Sandra
    D'Hooge, Rudi
    Meert, Theo
    BEHAVIOURAL BRAIN RESEARCH, 2010, 208 (01) : 149 - 157
  • [9] The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity
    Amaya, Fumimasa
    Wang, Haibin
    Costigan, Michael
    Allchorne, Andrew J.
    Hatcher, Jon P.
    Egerton, Julie
    Stean, Tania
    Morisset, Valerie
    Grose, David
    Gunthorpe, Martin J.
    Chessell, Iain P.
    Tate, Simon
    Green, Paula J.
    Woolf, Clifford J.
    JOURNAL OF NEUROSCIENCE, 2006, 26 (50) : 12852 - 12860
  • [10] Insights into the voltage-gated sodium channel, NaV1.8, and its role in visceral pain perception
    Heinle, J. Westley
    Dalessio, Shannon
    Janicki, Piotr
    Ouyang, Ann
    Vrana, Kent E.
    Ruiz-Velasco, Victor
    Coates, Matthew D.
    FRONTIERS IN PHARMACOLOGY, 2024, 15