Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

被引:89
|
作者
Murakami, M. [1 ]
Ae, N. [1 ]
Ishikawa, S. [1 ]
机构
[1] Natl Inst Agroenvironm Sci, Dept Environm Chem, Tsukuba, Ibaraki 3050856, Japan
关键词
soil Cd fraction; Cd uptake; maize; soybean; rice;
D O I
10.1016/j.envpol.2006.03.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg(-1), during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:96 / 103
页数:8
相关论文
共 50 条
  • [31] Development of Haploid Embryos from Soybean (Glycine max (L.) Merr.)
    Sharma, Deepshikha
    Ramlal, Ayyagari
    Lal, Sanjay Kumar
    Raju, Dhandapani
    Saini, Manisha
    Talukdar, Akshay
    Mallikarjun, Bingi Pujari
    Subramaniam, Sreeramanan
    Rajendran, Ambika
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2024, 60 (01) : S155 - S155
  • [32] Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]
    Charlson, Dirk V.
    Bhatnagar, Sandeep
    King, C. Andy
    Ray, Jeffery D.
    Sneller, Clay H.
    Carter, Thomas E., Jr.
    Purcell, Larry C.
    THEORETICAL AND APPLIED GENETICS, 2009, 119 (04) : 587 - 594
  • [33] Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties
    Koh, Kwangoh
    Youn, Jung Eun
    Kim, Hee-Seon
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2014, 51 (02): : 377 - 381
  • [34] Effect of seed coating on the yield of soybean Glycine max (L.) Merr.
    Jarecki, Waclaw
    Wietecha, Justyna
    PLANT SOIL AND ENVIRONMENT, 2021, 67 (08) : 468 - 473
  • [35] Polygenic inheritance of canopy wilting in soybean [Glycine max (L.) Merr.]
    Dirk V. Charlson
    Sandeep Bhatnagar
    C. Andy King
    Jeffery D. Ray
    Clay H. Sneller
    Thomas E. Carter
    Larry C. Purcell
    Theoretical and Applied Genetics, 2009, 119 : 587 - 594
  • [36] Impacts of glyphosate-based herbicide on leaf stomatal density and biomass production of transgenic soybean (Glycine max [L.] Merr.) and corn (Zea mays L.)
    Jérôme Bernier Brillon
    Marc Lucotte
    Gilles Tremblay
    Élise Smedbol
    Serge Paquet
    Acta Physiologiae Plantarum, 2023, 45
  • [37] Impacts of glyphosate-based herbicide on leaf stomatal density and biomass production of transgenic soybean (Glycine max [L.] Merr.) and corn (Zea mays L.)
    Brillon, Jerome Bernier
    Lucotte, Marc
    Tremblay, Gilles
    Smedbol, Elise
    Paquet, Serge
    ACTA PHYSIOLOGIAE PLANTARUM, 2023, 45 (05)
  • [38] Effect of Vacuum Soaking on the Properties of Soybean (Glycine max (L.) Merr.)
    Xiao, Gongnian
    Gong, Jinyan
    Ge, Qing
    You, Yuru
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2015, 11 (01) : 151 - 155
  • [39] Molecular Characterization of Magnesium Chelatase in Soybean [Glycine max (L.) Merr.]
    Zhang, Dan
    Chang, Enjie
    Yu, Xiaoxia
    Chen, Yonghuan
    Yang, Qinshuai
    Cao, Yanting
    Li, Xiukun
    Wang, Yuhua
    Fu, Aigen
    Xu, Min
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [40] Endophytic fungi of soybean (Glycine max (L.) Merr.) and their potential applications
    Abdelmagid, Ahmed
    Hou, Anfu
    Wijekoon, Champa
    CANADIAN JOURNAL OF PLANT SCIENCE, 2024, 104 (01) : 32 - 40