High-throughput method for the synthesis of high performance polystyrene nanocomposites

被引:9
作者
Awad, Walid H. [1 ]
机构
[1] Natl Inst Stand, Fire Protect Dept, Giza 12211, Egypt
关键词
clay; combinatorial; high-throughput; nanocomposite; polystyrene;
D O I
10.1080/03602550600728851
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A new approach toward the development and application of a high- throughput method for nanocomposites was proposed. Polystyrene clay nanocomposites were prepared, using different imidazolium modified montmorillonite clays as nanoadditives. The preparation was carried out utilizing the parallel synthesizer as a high-throughput technique. The effects of solvent, temperature, and type of compatibilizer on the final products were investigated. The final products were analyzed by means of thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Polystyrene-dimethyl decylimidazolium-montmorillonite (PS/DMDIM-MMT) and polystyrene-dimethyl hexadecyl imidazolium-montmorillonite (PS/DMHDIM-MMT) nanocomposites were obtained, using chlorobenzene as a solvent at 150 degrees C. The XRD and TEM data were employed to measure the degree of clay exfoliation in the fabricated samples. The results indicate that PS/DMDIM-MMT nanocomposite has an intercalated structure, whereas the PS/DMHDIM-MMT nanocomposite has an exfoliated structure.
引用
收藏
页码:1117 / 1122
页数:6
相关论文
共 16 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]   Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites [J].
Awad, WH ;
Gilman, JW ;
Nyden, M ;
Harris, RH ;
Sutto, TE ;
Callahan, J ;
Trulove, PC ;
DeLong, HC ;
Fox, DM .
THERMOCHIMICA ACTA, 2004, 409 (01) :3-11
[3]   Polymer layered silicate nanocomposites [J].
Giannelis, EP .
ADVANCED MATERIALS, 1996, 8 (01) :29-&
[4]  
GILMAN J, 2001, RECENT ADV FLAME RET
[5]   Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites [J].
Gilman, JW ;
Jackson, CL ;
Morgan, AB ;
Harris, R ;
Manias, E ;
Giannelis, EP ;
Wuthenow, M ;
Hilton, D ;
Phillips, SH .
CHEMISTRY OF MATERIALS, 2000, 12 (07) :1866-1873
[6]   Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites [J].
Gilman, JW .
APPLIED CLAY SCIENCE, 1999, 15 (1-2) :31-49
[7]   Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite [J].
Gilman, JW ;
Awad, WH ;
Davis, RD ;
Shields, J ;
Harris, RH ;
Davis, C ;
Morgan, AB ;
Sutto, TE ;
Callahan, J ;
Trulove, PC ;
DeLong, HC .
CHEMISTRY OF MATERIALS, 2002, 14 (09) :3776-3785
[8]  
Gilman JW, 1997, SAMPE J, V33, P40
[9]  
Hoogenboom R, 2003, MACROMOL RAPID COMM, V24, P16
[10]   Combinatorial materials research in the polymer industry: Speed versus flexibility [J].
Iden, R ;
Schrof, W ;
Hadeler, J ;
Lehmann, S .
MACROMOLECULAR RAPID COMMUNICATIONS, 2003, 24 (01) :63-72