Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion

被引:17
|
作者
Cheng, Hongmei [1 ]
Yuan, Rong [2 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Traveling waves; Predator-prey model; Nonlocal diffusion; Schauder's fixed point theorem; Coexistence state; LOTKA-VOLTERRA SYSTEM; GLOBAL STABILITY; LESLIE-GOWER; EXISTENCE; FRONTS; EQUATION; MODEL; DISPERSAL; DELAYS; PROPAGATION;
D O I
10.1016/j.amc.2018.04.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to establish the existence and non-existence of the traveling waves for the nonlocal Holling-Tanner predator-prey model. By applying the Schauder's fixed point theorem, we can obtain the existence of the traveling waves. Moreover, in order to prove the limit behavior of the traveling waves at infinity, we construct a sequence that converges to the coexistence state. For the proof of the nonexistence of the traveling waves, we use the property of the two-sided Laplace transform. Finally, we give the effect of the nonlocal diffusion term for the traveling waves. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:12 / 24
页数:13
相关论文
共 50 条
  • [31] Holling-Tanner Predator-Prey Model with State-Dependent Feedback Control
    Yang, Jin
    Tang, Guangyao
    Tang, Sanyi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [32] Turing patterns in a diffusive Holling-Tanner predator-prey model with an alternative food source for the predator
    Arancibia-Ibarra, Claudio
    Bode, Michael
    Flores, Jose
    Pettet, Graeme
    van Heijster, Peter
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 99
  • [33] TRAVELING WAVES FOR THE LOTKA-VOLTERRA PREDATOR-PREY SYSTEM WITHOUT DIFFUSION OF THE PREDATOR
    Hosono, Yuzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 161 - 171
  • [34] Bifurcations in Holling-Tanner model with generalist predator and prey refuge
    Xiang, Chuang
    Huang, Jicai
    Wang, Hao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 343 : 495 - 529
  • [35] Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-prey model
    Saha, Tapan
    Chakrabarti, Charugopal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) : 389 - 402
  • [36] The Impact of Nonlinear Harvesting on a Ratio-dependent Holling-Tanner Predator-prey System and Optimum Harvesting
    Singh, Manoj Kumar
    Bhadauria, B. S.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2020, 15 (01): : 117 - 148
  • [37] TRAVELING WAVEFRONTS IN NONLOCAL DIFFUSIVE PREDATOR-PREY SYSTEM WITH HOLLING TYPE II FUNCTIONAL RESPONSE
    Li, Shuang
    Weng, Peixuan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [38] Traveling waves of predator-prey system with a sedentary predator
    Li, Hongliang
    Wang, Yang
    Yuan, Rong
    Ma, Zhaohai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [39] Nonlocal Competition and Spatial Multi-peak Periodic Pattern Formation in Diffusive Holling-Tanner Predator-prey Model
    Geng, Dongxu
    Wang, Hongbin
    Jiang, Weihua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (01) : 673 - 702
  • [40] Attractive Periodic Solutions of a Discrete Holling-Tanner Predator-Prey Model with Impulsive Effect
    Duque, Cosme
    Uzategui, Jahnett
    Ruiz, Bladismir
    Perez, Maribel
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2020, 8 (01):