Ultrafast Transient Grating Spectroscopy in Silicon Quantum Dots

被引:2
作者
Wen, Xiaoming [1 ]
Van Dao, Lap [2 ]
Hannaford, Peter [2 ]
Cho, Eun-Chel [3 ]
Cho, Young H. [3 ]
Green, Martin A. [3 ]
机构
[1] Univ Melbourne, Sch Chem, Melbourne, Vic 3010, Australia
[2] Swinburne Univ Technol, Ctr Atom Opt & Ultrafast Spect, Hawthorn, Vic 3122, Australia
[3] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Ultrafast Spectroscopy; Silicon Quantum Dots; POROUS SILICON; SI NANOCRYSTALS; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; CONFINEMENT; DEPENDENCE; DYNAMICS; SPECTRUM; LUMINESCENCE; EMISSION;
D O I
10.1166/jnn.2009.1084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transient grating spectroscopy detects directly the relaxation of the excited carriers rather than time-resolved photoluminescence and thus it is particularly desired for the indirect semiconductors such as silicon quantum dots. We investigate ultrafast carrier dynamics in silicon quantum dots embedded in silicon oxide matrix using ferntosecond transient grating spectroscopy. Two ultrafast decay components are observed with decay time of 800 fs and 4 ps at various detection wavelengths, which are attributed to the transverse optical and transverse acoustic phonon assisted relaxation. Photoexcited electrons and holes are effectively trapped into the localized states on the surface of the silicon quantum dots where electrons and holes have a slow recombination in the time scale of microseconds.
引用
收藏
页码:4575 / 4579
页数:5
相关论文
共 40 条
[1]   Nature of luminescent surface states of semiconductor nanocrystallites [J].
Allan, G ;
Delerue, C ;
Lannoo, M .
PHYSICAL REVIEW LETTERS, 1996, 76 (16) :2961-2964
[2]   Silicon nanostructures for third generation photovoltaic solar cells [J].
Conibeer, Gavin ;
Green, Martin ;
Corkish, Richard ;
Cho, Young ;
Cho, Eun-Chel ;
Jiang, Chu-Wei ;
Fangsuwannarak, Thipwan ;
Pink, Edwin ;
Huang, Yidan ;
Puzzer, Tom ;
Trupke, Thorsten ;
Richards, Bryce ;
Shalav, Avi ;
Lin, Kuo-lung .
THIN SOLID FILMS, 2006, 511 :654-662
[3]  
DAO LV, 2005, FEMTOSECOND LASER SP, P197
[4]   Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals [J].
Delerue, C ;
Allan, G ;
Reynaud, C ;
Guillois, O ;
Ledoux, G ;
Huisken, F .
PHYSICAL REVIEW B, 2006, 73 (23)
[5]   Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy [J].
Dovrat, M ;
Goshen, Y ;
Jedrzejewski, J ;
Balberg, I ;
Sa'ar, A .
PHYSICAL REVIEW B, 2004, 69 (15) :155311-1
[6]   COHERENCE PEAKS IN PICOSECOND SAMPLING EXPERIMENTS [J].
EICHLER, HJ ;
LANGHANS, D ;
MASSMANN, F .
OPTICS COMMUNICATIONS, 1984, 50 (02) :117-122
[7]   Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2 [J].
Garcia, C ;
Garrido, B ;
Pellegrino, P ;
Ferre, R ;
Moreno, JA ;
Morante, JR ;
Pavesi, L ;
Cazzanelli, M .
APPLIED PHYSICS LETTERS, 2003, 82 (10) :1595-1597
[8]  
Hogemann C, 1996, REV SCI INSTRUM, V67, P3449, DOI 10.1063/1.1147157
[9]   Effects of particle size and excitation spectrum on the photoluminescence of silicon nanocrystals formed by ion implantation [J].
Hryciw, A ;
Meldrum, A ;
Buchanan, KS ;
White, CW .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2004, 222 (3-4) :469-476
[10]   Influence of the spatial arrangement on the quantum confinement properties of Si nanocrystals [J].
Iacona, F ;
Franzò, G ;
Vinciguerra, V ;
Irrera, A ;
Priolo, F .
OPTICAL MATERIALS, 2001, 17 (1-2) :51-55