A CMOS-integrated quantum sensor based on nitrogen-vacancy centres

被引:135
作者
Kim, Donggyu [1 ,2 ,3 ]
Ibrahim, Mohamed I. [3 ,4 ]
Foy, Christopher [1 ,4 ]
Trusheim, Matthew E. [1 ,4 ]
Han, Ruonan [3 ,4 ]
Englund, Dirk R. [1 ,3 ,4 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
MAGNETIC-RESONANCE-SPECTROSCOPY; SPIN; MAGNETOMETRY; ENTANGLEMENT; THERMOMETRY; RESOLUTION; OPTICS;
D O I
10.1038/s41928-019-0275-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The nitrogen-vacancy (NV) centre in diamond can be used as a solid-state quantum sensor with applications in magnetometry, electrometry, thermometry and chemical sensing. However, to deliver practical applications, existing NV-based sensing techniques, which are based on bulky and discrete instruments for spin control and detection, must be replaced by more compact designs. Here we show that NV-based quantum sensing can be integrated with complementary metal-oxide-semiconductor (CMOS) technology to create a compact and scalable platform. Using standard CMOS technology, we integrate the essential components for NV control and measurement-microwave generator, optical filter and photodetector-in a 200 mu m x 200 mu m footprint. With this platform we demonstrate quantum magnetometry with a sensitivity of 32.1 mu THz(-1/2) and simultaneous thermometry.
引用
收藏
页码:284 / 289
页数:6
相关论文
共 57 条
[1]   Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Waxman, A. ;
Bouchard, L-S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[2]   Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Santori, C. ;
Fu, K. -M. C. ;
Barclay, P. E. ;
Beausoleil, R. G. ;
Linget, H. ;
Roch, J. F. ;
Treussart, F. ;
Chemerisov, S. ;
Gawlik, W. ;
Budker, D. .
PHYSICAL REVIEW B, 2009, 80 (11)
[3]   Nanoscale nuclear magnetic resonance with chemical resolution [J].
Aslam, Nabeel ;
Pfender, Matthias ;
Neumann, Philipp ;
Reuter, Rolf ;
Zappe, Andrea ;
de Oliveira, Felipe Favaro ;
Denisenko, Andrej ;
Sumiya, Hitoshi ;
Onoda, Shinobu ;
Isoya, Junichi ;
Wrachtrup, Joerg .
SCIENCE, 2017, 357 (6346) :67-71
[4]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[5]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[6]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[7]   Quantum sensing with arbitrary frequency resolution [J].
Boss, J. M. ;
Cujia, K. S. ;
Zopes, J. ;
Degen, C. L. .
SCIENCE, 2017, 356 (6340) :837-840
[8]   Spatial mapping of band bending in semiconductor devices using in situ quantum sensors [J].
Broadway, D. A. ;
Dontschuk, N. ;
Tsai, A. ;
Lillie, S. E. ;
Lew, C. T-K ;
McCallum, J. C. ;
Johnson, B. C. ;
Doherty, M. W. ;
Stacey, A. ;
Hollenberg, L. C. L. ;
Tetienne, J-P .
NATURE ELECTRONICS, 2018, 1 (09) :502-507
[9]  
Charbon E, 2017, ISSCC DIG TECH PAP I, P264, DOI 10.1109/ISSCC.2017.7870362
[10]   Miniature Cavity-Enhanced Diamond Magnetometer [J].
Chatzidrosos, Georgios ;
Wickenbrock, Arne ;
Bougas, Lykourgos ;
Leefer, Nathan ;
Wu, Teng ;
Jensen, Kasper ;
Dumeige, Yannick ;
Budker, Dmitry .
PHYSICAL REVIEW APPLIED, 2017, 8 (04)