Twisted Semigroup Algebras

被引:8
作者
Rigal, L. [1 ]
Zadunaisky, P. [2 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite, LAGA, UMR CNRS 7539, F-93430 Villetaneuse, France
[2] Univ Buenos Aires, Dept Matemat, FCEN, Buenos Aires, DF, Argentina
关键词
Noncommutative geometry; Quantum toric varieties; Semigroup algebras; Artin-Schelter; Cohen-Macaulay; Artin-Schelter Gorenstein; NONCOMMUTATIVE GRADED ALGEBRAS; DUALIZING COMPLEXES; RINGS; VARIETIES; DIMENSION;
D O I
10.1007/s10468-015-9525-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field k. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then Spec k inverted right perpendicular S inverted left perpendicular is an affine toric variety over k, and we refer to the twists of k inverted right perpendicular S inverted left perpendicular as quantum affine toric varieties. We show that every quantum affine toric variety has a "dense quantum torus", in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
引用
收藏
页码:1155 / 1186
页数:32
相关论文
共 29 条
[1]   NONCOMMUTATIVE PROJECTIVE SCHEMES [J].
ARTIN, M ;
ZHANG, JJ .
ADVANCES IN MATHEMATICS, 1994, 109 (02) :228-287
[2]   Hochschild dimension for graded algebras. [J].
Berger, R .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (10) :597-600
[3]  
Brodmannm M.P., CAMBRIDGE STUDIES AD, V60
[4]   Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras [J].
Brown, K. A. ;
Zhang, J. J. .
JOURNAL OF ALGEBRA, 2008, 320 (05) :1814-1850
[5]  
Bruns W., 1993, COHEN MACAULAY RINGS, V39
[6]   Toric degenerations of Schubert varieties [J].
Caldero, P .
TRANSFORMATION GROUPS, 2002, 7 (01) :51-60
[7]  
Cartan H., 1956, Homological algebra
[8]  
Fulton W., 1993, Annals of Mathematics Studies, DOI DOI 10.1515/9781400882526
[9]  
Hartshorne Robin, 1966, LECT NOTES MATH, V20
[10]  
Hibi T., 1987, ADV STUDIES PURE MAT, V11, P93