Composite fermion-boson mapping for fermionic lattice models

被引:4
作者
Zhao, J. [1 ]
Jimenez-Hoyos, C. A. [1 ]
Scuseria, G. E. [1 ,2 ]
Huerga, D. [3 ]
Dukelsky, J. [3 ]
Rombouts, S. M. A. [4 ]
Ortiz, G. [5 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[3] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain
[4] Univ Huelva, Dept Fis Aplicada, E-21071 Huelva, Spain
[5] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
关键词
cluster mapping; Hubbard model; slave particles; 2-DIMENSIONAL HUBBARD-MODEL; SUPERCONDUCTIVITY; SYSTEMS; ABSENCE;
D O I
10.1088/0953-8984/26/45/455601
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a mapping of elementary fermion operators onto a quadratic form of composite fermionic and bosonic cluster operators. The mapping is an exact isomorphism as long as the physical constraint of one composite particle per cluster is satisfied. This condition is treated on average in a composite particle mean-field approach, which consists of an ansatz that decouples the composite fermionic and bosonic sectors. The theory is tested on the 1D and 2D Hubbard models. Using a Bogoliubov determinant for the composite fermions and either a coherent or Bogoliubov state for the bosons, we obtain a simple and accurate procedure for treating the Mott insulating phase of the Hubbard model with mean-field computational cost.
引用
收藏
页数:8
相关论文
共 23 条
[1]   Plaquette boson-fermion model of cuprates [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW B, 2002, 65 (10) :1-15
[2]   Mott transition in one dimension: Benchmarking dynamical cluster approaches [J].
Balzer, Matthias ;
Hanke, Werner ;
Potthoff, Michael .
PHYSICAL REVIEW B, 2008, 77 (04)
[3]  
Blaizot J.-P., 1986, Quantum Theory of Finite Systems
[4]   Density matrix embedding from broken symmetry lattice mean fields [J].
Bulik, Ireneusz W. ;
Scuseria, Gustavo E. ;
Dukelsky, Jorge .
PHYSICAL REVIEW B, 2014, 89 (03)
[5]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[6]   Correlated wave functions and the absence of long-range order in numerical studies of the Hubbard model [J].
Guerrero, M ;
Ortiz, G ;
Gubernatis, JE .
PHYSICAL REVIEW B, 1999, 59 (03) :1706-1711
[7]   ANTIFERROMAGNETISM IN THE TWO-DIMENSIONAL HUBBARD-MODEL [J].
HIRSCH, JE ;
TANG, S .
PHYSICAL REVIEW LETTERS, 1989, 62 (05) :591-594
[8]   Composite Boson Mapping for Lattice Boson Systems [J].
Huerga, Daniel ;
Dukelsky, Jorge ;
Scuseria, Gustavo E. .
PHYSICAL REVIEW LETTERS, 2013, 111 (04)
[9]   Hierarchical mean-field approach to the J1-J2 Heisenberg model on a square lattice [J].
Isaev, L. ;
Ortiz, G. ;
Dukelsky, J. .
PHYSICAL REVIEW B, 2009, 79 (02)
[10]   Density Matrix Embedding: A Simple Alternative to Dynamical Mean-Field Theory [J].
Knizia, Gerald ;
Chan, Garnet Kin-Lic .
PHYSICAL REVIEW LETTERS, 2012, 109 (18)