In this paper, the vibration control capability of shape memory alloy (SMA) composite beams subjected to impulsive loads is examined. In order to simulate the SMA response, a one-dimensional constitutive model is introduced which is able to reproduce pseudo-elasticity, martensite transformation/orientation and in particular ferro-elasticity effects. A numerical algorithm is presented to solve non-linear SMA constitutive model by means of an elastic-predictor inelastic-corrector return map procedure. The equivalent single layer theory of Rayleigh-Euler-Bernoulli is used to describe displacement field of SMA laminated composite beams. Geometrical non-linearity is also considered in the von Karman sense. Considering rotary inertia effects, finite element equations of motion are developed using the Hamilton principle. Newmark and Newton-Raphson methods are utilized to obtain an incremental solution of the problem. Extensive numerical results are presented to provide an insight into the influence of pre-strain, temperature, location and thickness of SMA layers on the vibration control of SMA composite beams subjected to various blast pulses. Considering ferro-elasticity effect, results reveal the fact that SMA layers with high pre-strain have a passive vibration control capability in low temperatures and yield a better efficiency in comparison with pseudo-elastic SMA layers. (c) 2013 Elsevier Ltd. All rights reserved.