Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes

被引:31
作者
Dabos, George [1 ]
Manolis, Athanasios [1 ]
Tsiokos, Dimitris [1 ]
Ketzaki, Dimitra [1 ]
Chatzianagnostou, Evangelia [1 ]
Markey, Laurent [2 ]
Rusakov, Dmitrii [2 ]
Weeber, Jean-Claude [2 ]
Dereux, Alain [2 ]
Giesecke, Anna-Lena [3 ]
Porschatis, Caroline [3 ]
Wahlbrink, Thorsten [3 ]
Chmielak, Bartos [3 ]
Pleros, Nikos [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Ctr Interdisciplinary Res & Innovat, 10th Km Thessalonikis Thermis Av, Thessaloniki 57001, Greece
[2] Univ Bourgogne, CNRS, UMR 6303, Lab Interdisciplinaire Carnot Bourgogne, De Bourgogne, France
[3] AMO GmbH, Adv Microelect Ctr Aachen AMICA, Otto Blumenthal Str 25, D-52074 Aachen, Germany
基金
欧盟地平线“2020”;
关键词
DATA-TRANSMISSION; RESONANCE; MODULATOR; COPPER;
D O I
10.1038/s41598-018-31736-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Co-integrating CMOS plasmonics and photonics became the "sweet spot" to hit in order to combine their benefits and allow for volume manufacturing of plasmo-photonic integrated circuits. Plasmonics can naturally interface photonics with electronics while offering strong mode confinement, enabling in this way on-chip data interconnects when tailored to single-mode waveguides, as well as high-sensitivity biosensors when exposing Surface-Plasmon-Polariton (SPP) modes in aqueous environment. Their synergy with low-loss photonics can tolerate the high plasmonic propagation losses in interconnect applications, offering at the same time a powerful portfolio of passive photonic functions towards avoiding the use of bulk optics for SPP excitation and facilitating compact biosensor setups. The co-integration roadmap has to proceed, however, over the utilization of fully CMOS compatible material platforms and manufacturing processes in order to allow for a practical deployment route. Herein, we demonstrate for the first time Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS manufacturing processes. We validate the data carrying credentials of CMOS plasmonics with 25 Gb/s data traffic and we confirm successful plasmonic propagation in both air and water-cladded waveguide configurations. This platform can potentially fuel the deployment of co-integrated plasmonic and photonic structures using CMOS processes for biosensing and on-chip interconnect applications.
引用
收藏
页数:10
相关论文
共 37 条
[1]   High-speed plasmonic modulator in a single metal layer [J].
Ayata, Masafumi ;
Fedoryshyn, Yuriy ;
Heni, Wolfgang ;
Baeuerle, Benedikt ;
Josten, Arne ;
Zahner, Marco ;
Koch, Ueli ;
Salamin, Yannick ;
Hoessbacher, Claudia ;
Haffner, Christian ;
Elder, Delwin L. ;
Dalton, Larry R. ;
Leuthold, Juerg .
SCIENCE, 2017, 358 (6363) :630-632
[2]   Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop [J].
Banan, Behnam ;
Hai, Mohammed Shafiqul ;
Lisicka-Skrzek, Ewa ;
Berini, Pierre ;
Liboiron-Ladouceur, Odile .
IEEE PHOTONICS JOURNAL, 2013, 5 (03)
[3]   CMOS plasmonics in WDM data transmission: 200 Gb/s (8 x 25Gb/s) transmission over aluminum plasmonic waveguides [J].
Dabos, G. ;
Manolis, A. ;
Papaioannou, S. ;
Tsiokos, D. ;
Markey, L. ;
Weeber, J. -C. ;
Dereux, A. ;
Giesecke, A. L. ;
Porschatis, C. ;
Chmielak, B. ;
Pleros, N. .
OPTICS EXPRESS, 2018, 26 (10) :12469-12478
[4]   TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform [J].
Dabos, G. ;
Manolis, A. ;
Giesecke, A. L. ;
Porschatis, C. ;
Chmielak, B. ;
Wahlbrink, T. ;
Pleros, N. ;
Tsiokos, D. .
OPTICS COMMUNICATIONS, 2017, 405 :35-38
[5]   Plasmonic Stripes in Aqueous Environment Co-Integrated With Si3N4 Photonics [J].
Dabos, George ;
Ketzaki, Dimitra ;
Manolis, Athanasios ;
Markey, Laurent ;
Weeber, Jean Claude ;
Dereux, Alain ;
Giesecke, Anna Lena ;
Porschatis, Caroline ;
Chmielak, Bartos ;
Tsiokos, Dimitris ;
Pleros, Nikos .
IEEE PHOTONICS JOURNAL, 2018, 10 (01)
[6]   Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics [J].
Delacour, Cecile ;
Blaize, Sylvain ;
Grosse, Philippe ;
Fedeli, Jean Marc ;
Bruyant, Aurelien ;
Salas-Montiel, Rafael ;
Lerondel, Gilles ;
Chelnokov, Alexei .
NANO LETTERS, 2010, 10 (08) :2922-2926
[7]   Passive long-range surface plasmon-polariton devices in Cytop [J].
Fan, Hui ;
Buckley, Robin ;
Berini, Pierre .
APPLIED OPTICS, 2012, 51 (10) :1459-1467
[8]   Ultralow-Loss CMOS Copper Plasmonic Waveguides [J].
Fedyanin, Dmitry Yu. ;
Yakubovsky, Dmitry I. ;
Kirtaev, Roman V. ;
Volkov, Valentyn S. .
NANO LETTERS, 2016, 16 (01) :362-366
[9]   Last Advances in Silicon-Based Optical Biosensors [J].
Fernandez Gavela, Adrian ;
Grajales Garcia, Daniel ;
Ramirez, Jhonattan C. ;
Lechuga, Laura M. .
SENSORS, 2016, 16 (03)
[10]   Bloch Long-Range Surface Plasmon Polaritons on Metal Stripe Waveguides on a Multilayer Substrate [J].
Fong, Norman R. ;
Menotti, Matteo ;
Lisicka-Skrzek, Ewa ;
Northfield, Howard ;
Olivieri, Anthony ;
Tait, Niall ;
Liscidin, Marco ;
Berini, Pierre .
ACS PHOTONICS, 2017, 4 (03) :593-599