Schauder estimates for equations with fractional derivatives

被引:53
作者
Clément, P
Gripenberg, G
Londen, SO
机构
[1] Delft Univ Technol, Fac Tech Math & Informat, NL-2600 GA Delft, Netherlands
[2] Helsinki Univ Technol, Inst Math, FIN-02015 Hut, Finland
关键词
fractional derivative; maximal regularity; Schauder estimate; Holder continuity; fundamental solution; integro-differential equation;
D O I
10.1090/S0002-9947-00-02507-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equation (*) D-t(alpha)(u - h(1)) + D-x(beta)(u - h(2)) = f, 0 < alpha, beta < 1, t, x greater than or equal to 0, where D-t(alpha) and D-x(beta) are fractional derivatives of order alpha and beta is studied. It is shown that if f = f((t) over bar,(x) over bar), h(1) = h(1)((x) over bar), and h(2) = h(2)((t) over bar) are Holder-continuous and f(0, 0) = 0, then there is a solution such that D(t)(alpha)u and D(x)(beta)u are Holder-continuous as well. This is proved by first considering an abstract fractional evolution equation and then applying the results obtained to (*). Finally the solution of (*) with f = 1 is studied.
引用
收藏
页码:2239 / 2260
页数:22
相关论文
共 17 条
[1]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[2]  
[Anonymous], 1968, ASYMPTOTISCHE DARSTE
[3]  
Clement P., 1990, J INTEGRAL EQUAT, V2, P375
[4]   On convergence to entropy solutions of a single conservation law [J].
Cockburn, B ;
Gripenberg, G ;
Londen, SO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (01) :206-251
[5]  
DAPRATO G, 1975, J MATH PURE APPL, V54, P305
[6]   EXISTENCE AND REGULARITY FOR A CLASS OF INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE [J].
DAPRATO, G ;
IANNELLI, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 112 (01) :36-55
[7]   Singular kernels and compactness in nonlinear conservation laws [J].
Feireisl, E ;
Petzeltova, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 142 (02) :291-304
[8]  
GRIPENBERG G, 1995, DIFFERENTIAL INTEGRA, V8, P1961
[9]  
GRISVARD P, 1966, J MATH PURE APPL, V45, P143
[10]  
Grisvard P., 1969, ANN SCI ECOLE NORM S, V2, P311, DOI DOI 10.24033/ASENS.1178