A no-equilibrium hyperchaotic system with a cubic nonlinear term

被引:85
作者
Viet-Thanh Pham [1 ]
Vaidyanathan, Sundarapandian [2 ]
Volos, Christos [3 ]
Jafari, Sajad [4 ]
Kingni, Sifeu Takougang [5 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Telecommun, 01 Dai Co Viet, Hanoi, Vietnam
[2] Vel Tech Univ, Ctr Res & Dev, Madras 600062, Tamil Nadu, India
[3] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[4] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 158754413, Iran
[5] Univ Maroua, Inst Mines & Petr Ind, Dept Mech & Elect Engn, POB 46, Maroua, Cameroon
来源
OPTIK | 2016年 / 127卷 / 06期
关键词
Chaos; Hyperchaotic; Hidden attractor; Equilibrium; Synchronization; SIMPLE CHAOTIC FLOWS; CHUAS CIRCUIT; HIDDEN OSCILLATIONS; SYNCHRONIZATION; EQUATION; FEEDBACK; IMPLEMENTATION; ATTRACTORS; MECHANISM; DESIGN;
D O I
10.1016/j.ijleo.2015.12.048
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discovering dynamical systems with hidden attractors has become an attractive topic recently. A novel four-dimensional continuous-time autonomous system with a cubic nonlinear term is introduced in this work. It is worth noting that this no-equilibrium system can generate hidden hyperchaotic attractors. The fundamental properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, an adaptive scheme has been presented to synchronize two such identical hyperchaotic systems. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:3259 / 3265
页数:7
相关论文
共 63 条
[11]   A new Lorenz-type hyperchaotic system with a curve of equilibria [J].
Chen, Yuming ;
Yang, Qigui .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 112 :40-55
[12]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[13]   Chua's equation with cubic nonlinearity [J].
Huang, A ;
Pivka, L ;
Wu, CW ;
Franz, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (12A) :2175-2222
[14]   Simple chaotic flows with a line equilibrium [J].
Jafari, Sajad ;
Sprott, J. C. .
CHAOS SOLITONS & FRACTALS, 2013, 57 :79-84
[15]   Elementary quadratic chaotic flows with no equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Golpayegani, S. Mohammad Reza Hashemi .
PHYSICS LETTERS A, 2013, 377 (09) :699-702
[16]   Sliding mode control of chaos in the cubic Chua's circuit system [J].
Jang, MJ ;
Chen, CL ;
Chen, COK .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (06) :1437-1449
[17]   HYBRID CHAOS SYNCHRONIZATION OF FOUR-SCROLL SYSTEMS VIA ACTIVE CONTROL [J].
Karthikeyan, Rajagopal ;
Sundarapandian, Vaidyanathan .
JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2014, 65 (02) :97-103
[18]  
Khalil H., 2014, Control of Nonlinear Systems
[19]   ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA'S CIRCUIT WITH A SMOOTH NONLINEARITY [J].
Khibnik, Alexander I. ;
Roose, Dirk ;
Chua, Leon O. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02) :363-384
[20]   Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form [J].
Kingni, S. T. ;
Jafari, S. ;
Simo, H. ;
Woafo, P. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (05) :1-16