A no-equilibrium hyperchaotic system with a cubic nonlinear term

被引:85
作者
Viet-Thanh Pham [1 ]
Vaidyanathan, Sundarapandian [2 ]
Volos, Christos [3 ]
Jafari, Sajad [4 ]
Kingni, Sifeu Takougang [5 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Telecommun, 01 Dai Co Viet, Hanoi, Vietnam
[2] Vel Tech Univ, Ctr Res & Dev, Madras 600062, Tamil Nadu, India
[3] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[4] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 158754413, Iran
[5] Univ Maroua, Inst Mines & Petr Ind, Dept Mech & Elect Engn, POB 46, Maroua, Cameroon
来源
OPTIK | 2016年 / 127卷 / 06期
关键词
Chaos; Hyperchaotic; Hidden attractor; Equilibrium; Synchronization; SIMPLE CHAOTIC FLOWS; CHUAS CIRCUIT; HIDDEN OSCILLATIONS; SYNCHRONIZATION; EQUATION; FEEDBACK; IMPLEMENTATION; ATTRACTORS; MECHANISM; DESIGN;
D O I
10.1016/j.ijleo.2015.12.048
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discovering dynamical systems with hidden attractors has become an attractive topic recently. A novel four-dimensional continuous-time autonomous system with a cubic nonlinear term is introduced in this work. It is worth noting that this no-equilibrium system can generate hidden hyperchaotic attractors. The fundamental properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, an adaptive scheme has been presented to synchronize two such identical hyperchaotic systems. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:3259 / 3265
页数:7
相关论文
共 63 条
[1]   A Novel Finite-Time Sliding Mode Controller for Synchronization of Chaotic Systems with Input Nonlinearity [J].
Aghababa, Mohammad Pourmahmood ;
Aghababa, Hasan Pourmahmood .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (11) :3221-3232
[2]   Nonlinear observer for synchronization of chaotic systems with application to secure data transmission [J].
Aguilar-Lopez, Ricardo ;
Martinez-Guerra, Rafael ;
Perez-Pinacho, Claudia A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (08) :1541-1548
[3]   Frequency synchronization of clusters in coupled extended systems [J].
Akopov, A ;
Astakhov, V ;
Vadivasova, T ;
Shabunin, A ;
Kapitaniak, T .
PHYSICS LETTERS A, 2005, 334 (2-3) :169-172
[4]  
[Anonymous], 1965, Sov. Math. Doklady
[5]  
[Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
[6]  
[Anonymous], ARCH CONTROL SCI
[7]  
[Anonymous], 2010, CHAOS SYNCHRONIZATIO
[8]   A POSSIBLE NEW MECHANISM FOR THE ONSET OF TURBULENCE [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
PHYSICS LETTERS A, 1981, 81 (04) :197-201
[9]  
AUVERGNE M, 1985, ASTRON ASTROPHYS, V142, P388
[10]   Emulating complex business cycles by using an electronic analogue [J].
Bouali, S. ;
Buscarino, A. ;
Fortuna, L. ;
Frasca, M. ;
Gambuzza, L. V. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (06) :2459-2465