Characterization of the variable exponent Sobolev norm without derivatives

被引:6
作者
Hasto, Peter [1 ,2 ]
Ribeiro, Ana Margarida [3 ,4 ]
机构
[1] Univ Oulu, Dept Math Sci, POB 3000, FI-90014 Oulu, Finland
[2] Univ Turku, Dept Math & Stat, Turku, Finland
[3] Univ Nova Lisboa, Fac Ciencias & Tecnol, CMA, P-2829516 Caparica, Portugal
[4] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
关键词
Non-standard growth; variable exponent; Sobolev space; Gagliardo seminorm; SPACES; FUNCTIONALS; SMOOTHNESS;
D O I
10.1142/S021919971650022X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The norm in classical Sobolev spaces can be expressed as a difference quotient. This expression can be used to generalize the space to the fractional smoothness case. Since the difference quotient is based on shifting the function, it cannot be generalized to the variable exponent case. In its place, we introduce a smoothed difference quotient and show that it can be used to characterize the variable exponent Sobolev space.
引用
收藏
页数:13
相关论文
共 15 条
  • [1] Besov spaces with variable smoothness and integrability
    Almeida, Alexandre
    Hasto, Peter
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) : 1628 - 1655
  • [2] CAN THE NONLOCAL CHARACTERIZATION OF SOBOLEV SPACES BY BOURGAIN ET AL. BE USEFUL FOR SOLVING VARIATIONAL PROBLEMS?
    Aubert, Gilles
    Kornprobst, Pierre
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 844 - 860
  • [3] Limiting embedding theorems for Ws,p,p when s ↑ 1 and applications
    Bourgain, J
    Brezis, H
    Mironescu, P
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1): : 77 - 101
  • [4] Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
  • [5] How to recognize constant functions.: Connections with Sobolev spaces
    Brézis, H
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) : 693 - 708
  • [6] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [7] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
  • [8] Function spaces of variable smoothness and integrability
    Diening, L.
    Hasto, P.
    Roudenko, S.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (06) : 1731 - 1768
  • [9] Variable exponent trace spaces
    Diening, Lars
    Hasto, Peter
    [J]. STUDIA MATHEMATICA, 2007, 183 (02) : 127 - 141
  • [10] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +