Fast Reconstruction of Accelerated Dynamic MRI Using Manifold Kernel Regression

被引:8
作者
Bhatia, Kanwal K. [1 ]
Caballero, Jose [1 ]
Price, Anthony N. [2 ]
Sun, Ying [3 ]
Hajnal, Jo V. [2 ]
Rueckert, Daniel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Biomed Image Anal Grp, London SW7 2AZ, England
[2] Kings Coll London, Div Imaging Sci & Biomed Engn, London WC2R 2LS, England
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III | 2015年 / 9351卷
基金
英国工程与自然科学研究理事会;
关键词
SPARSITY;
D O I
10.1007/978-3-319-24574-4_61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel method for fast reconstruction of dynamic MRI from undersampled k-space data, thus enabling highly accelerated acquisition. The method is based on kernel regression along the manifold structure of the sequence derived directly from k-space data. Unlike compressed sensing techniques which require solving a complex optimisation problem, our reconstruction is fast, taking under 5 seconds for a 30 frame sequence on conventional hardware. We demonstrate our method on 10 retrospectively undersampled cardiac cine MR sequences, showing improved performance over state-of-the-art compressed sensing.
引用
收藏
页码:510 / 518
页数:9
相关论文
共 14 条
[1]   The Need for Speed Accelerating CMR Imaging Assessment of Cardiac Function [J].
Axel, Leon ;
Sodickson, Daniel K. .
JACC-CARDIOVASCULAR IMAGING, 2014, 7 (09) :893-895
[2]   Random Projections of Smooth Manifolds [J].
Baraniuk, Richard G. ;
Wakin, Michael B. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (01) :51-77
[3]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[4]   Hierarchical manifold learning for regional image analysis [J].
Bhatia, Kanwal K. ;
Rao, Anil ;
Price, Anthony N. ;
Wolz, Robin ;
Hajnal, Joseph V. ;
Rueckert, Daniel .
IEEE Transactions on Medical Imaging, 2014, 33 (02) :444-461
[5]   Dictionary Learning and Time Sparsity for Dynamic MR Data Reconstruction [J].
Caballero, Jose ;
Price, Anthony N. ;
Rueckert, Daniel ;
Hajnal, Joseph V. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) :979-994
[6]   Population Shape Regression from Random Design Data [J].
Davis, Brad C. ;
Fletcher, P. Thomas ;
Bullitt, Elizabeth ;
Joshi, Sarang .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 90 (02) :255-266
[7]   Sparse MRI: The application of compressed sensing for rapid MR imaging [J].
Lustig, Michael ;
Donoho, David ;
Pauly, John M. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) :1182-1195
[8]   Retrospectively gated cardiac cine imaging with temporal and spatial acceleration [J].
Madore, Bruno ;
Hoge, W. Scott ;
Chao, Tzu-Cheng ;
Zientara, Gary P. ;
Chu, Renxin .
MAGNETIC RESONANCE IMAGING, 2011, 29 (04) :457-469
[9]   Low-Rank Plus Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components [J].
Otazo, Ricardo ;
Candes, Emmanuel ;
Sodickson, Daniel K. .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (03) :1125-1136
[10]  
Poddar S., 2014, REAL TIME CARDIAC MR, P5309