Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway

被引:7
|
作者
Wei, Li [1 ]
Peng, Ya [2 ]
Yang, Xiao-Jun [1 ]
Zhou, Peng [2 ]
机构
[1] Soochow Univ, Affiliated Hosp 3, Dept Blood Transfus, Changzhou, Jiangsu, Peoples R China
[2] Soochow Univ, Affiliated Hosp 3, Dept Neurosurg, Changzhou 213003, Jiangsu, Peoples R China
来源
KAOHSIUNG JOURNAL OF MEDICAL SCIENCES | 2021年 / 37卷 / 06期
关键词
ATG3; cerebral ischemia– reperfusion injury; JAK2; STAT3pathway; lncRNA RMRP; microRNA‐ 613;
D O I
10.1002/kjm2.12362
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cerebral ischemia-reperfusion (I/R) injury can induce the mitophagy of neurons in the ischemic brain. Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of various injuries, especially in cerebral I/R injury. The purpose of this study is to investigate the molecular mechanism of lncRNA RNA component of mitochondrial RNA processing endoribonuclease (RMRP) in cerebral I/R injury. The middle cerebral artery occlusion (MCAO) mouse model was established. Neurological deficit score, pathological structure, infarcted area, neuron number, cell apoptosis, and coagulation ability of MCAO mice were evaluated. The expressions of RMRP, microRNA (miR)-613, and ATG3 in MCAO mice were detected. The binding relationships among miR-613, RMRP, and ATG3 were predicted and verified. Neuro 2A (N2a) cells were treated with oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury. Cell viability and apoptosis assays were performed. The effects of miR-613, ATG3, and RMRP on I/R injury were verified by functional rescue experiments. JAK2/STAT3 phosphorylation level was detected. We found significantly upregulated RMRP and ATG3, and downregulated miR-613 expressions in MCAO mice. RMRP could escalate ATG3 mRNA expression through miR-613. RMRP knockdown promoted viability and inhibited apoptosis of OGD/R-treated N2a cells, which could be reversed by miR-613 inhibition or ATG3 overexpression. RMRP overexpression inhibited the activation of JAK2/STAT3 signaling pathway. We demonstrated that lncRNA RMRP competitively bound to miR-613, leading to the increase of ATG3 expression and the inhibition the JAK2/STAT3 pathway, thus promoting cerebral I/R injury in mice.
引用
收藏
页码:468 / 478
页数:11
相关论文
共 50 条
  • [1] Curcumin protects against cerebral ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway in rats
    Li, Linlin
    Li, Haiyong
    Li, Mingming
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (09): : 14985 - 14991
  • [2] Effect of thrombopoietin on cerebral ischemia-reperfusion injury in rats through JAK2/STAT3 signaling pathway
    Song, Dandan
    MINERVA SURGERY, 2022, 77 (05): : 521 - 522
  • [3] The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury
    Zhong, Yi
    Yin, Bo
    Ye, Yingze
    Dekhel, Omar Y. A. T.
    Xiong, Xiaoxing
    Jian, Zhihong
    Gu, Lijuan
    EXPERIMENTAL NEUROLOGY, 2021, 341
  • [4] Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway
    Yu, Li
    Zhang, Yangyang
    Chen, Qianqian
    He, Yu
    Zhou, Huifen
    Wan, Haitong
    Yang, Jiehong
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 149
  • [5] Cucurbitacin B protects against myocardial ischemia-reperfusion injury through activating JAK2/STAT3 signaling pathway
    Chen, Chao
    Chen, Yuqiong
    Xu, Mingzhu
    Chen, Lin
    Sun, Zhongqi
    Gong, Junrong
    Li, Yafei
    Jiang, Tingbo
    CELLULAR AND MOLECULAR BIOLOGY, 2023, 69 (11) : 155 - 161
  • [6] DIOSMIN PROTECTS AGAINST CEREBRAL ISCHEMIA/REPERFUSION INJURY THROUGH ACTIVATING JAK2/STAT3 SIGNAL PATHWAY IN MICE
    Liu, X.
    Zhang, X.
    Zhang, J.
    Kang, N.
    Zhang, N.
    Wang, H.
    Xue, J.
    Yu, J.
    Yang, Y.
    Cui, H.
    Cui, L.
    Wang, L.
    Wang, X.
    NEUROSCIENCE, 2014, 268 : 318 - 327
  • [7] Knockdown of long non-coding RNA HOXD-AS1 inhibits gastric cancer cell growth via inactivating the JAK2/STAT3 pathway
    Zheng, Li
    Chen, Jiangtao
    Zhou, Zhongyong
    He, Zhikuan
    TUMOR BIOLOGY, 2017, 39 (05)
  • [8] Ulinastatin affects focal cerebral ischemia-reperfusion injury via SOCS1-mediated JAK2/STAT3 signalling pathway
    Chen, Xiaoxi
    Li, Peng
    Huang, Renming
    Zhang, Juan
    Ouyang, Xingzhi
    Tan, Dianxiang
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2023, 50 (01) : 107 - 116
  • [9] Melatonin protects circulatory death heart from ischemia/reperfusion injury via the JAK2/STAT3 signalling pathway
    Lan, Hongwen
    Su, Yunshu
    Liu, Yakun
    Deng, Cheng
    Wang, Jing
    Chen, Taiqiang
    Jules, Kouevidjin Ekue Dodzi
    Masau, Jackson Ferdinand
    Li, Huiling
    Wei, Xiang
    LIFE SCIENCES, 2019, 228 : 35 - 46
  • [10] Loganin attenuates the inflammation, oxidative stress, and apoptosis through the JAK2/STAT3 pathway in cerebral ischemia-reperfusion injury
    Xi, Yunfeng
    Hou, Xiaoli
    Huang, Yuan
    Zhou, Yan
    Chen, Yu
    Wang, Yixia
    Cheng, Hong
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2025, 34 (01):