Random-matrix approach to transition-state theory

被引:5
作者
Weidenmueller, H. A. [1 ]
机构
[1] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
关键词
SYSTEMS;
D O I
10.1103/PhysRevE.105.044143
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To model a complex system intrinsically separated by a barrier, we use two random Hamiltonians, coupled to each other either by a tunneling matrix element or by an intermediate transition state. We study that model in the universal limit of large matrix dimension. We calculate the average probability < P-ab > for transition from scattering channel a coupled to the first Hamiltonian to scattering channel b coupled to the second Hamiltonian. Using only the assumption Sigma T-b'(b') >> 1 we find < P-ab > = PaTb/Sigma T-b'(b'). Here P-a is the probability of formation of the tunneling channel or the transition state, and the T-b' are the transmission coefficients for channels coupled to the second Hamiltonian. That result confirms transition-state theory in its general form. For tunneling through a very thick barrier the condition Sigma T-b'(b' )>> 1 is relaxed and independence of formation and decay of the tunneling process hold more generally.
引用
收藏
页数:7
相关论文
共 12 条
[1]  
Bertsch G. F., COMMUNICATION
[2]   Transition-State Dynamics in Complex Quantum Systems [J].
Bertsch, George F. ;
Hagino, Kouichi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (11)
[3]   The mechanism of nuclear fission [J].
Bohr, N ;
Wheeler, JA .
PHYSICAL REVIEW, 1939, 56 (05) :426-450
[4]   Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption [J].
Fyodorov, YV ;
Savin, DV ;
Sommers, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (49) :10731-10760
[5]  
Guhr T., 1998, Physics Reports, V299, P189, DOI 10.1016/S0370-1573(97)00088-4
[6]   Porter-Thomas fluctuations in complex quantum systems [J].
Hagino, K. ;
Bertsch, G. F. .
PHYSICAL REVIEW E, 2021, 104 (05)
[7]  
Krappe H.J., 2012, Lecture Notes in Physics, V838
[8]   Universal statistics of the local Green's function in wave chaotic systems with absorption [J].
Savin, DV ;
Sommers, HJ ;
Fyodorov, YV .
JETP LETTERS, 2005, 82 (08) :544-548
[9]   Current status of transition-state theory [J].
Truhlar, DG ;
Garrett, BC ;
Klippenstein, SJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :12771-12800
[10]   GRASSMANN INTEGRATION IN STOCHASTIC QUANTUM PHYSICS - THE CASE OF COMPOUND NUCLEUS SCATTERING [J].
VERBAARSCHOT, JJM ;
WEIDENMULLER, HA ;
ZIRNBAUER, MR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 129 (06) :367-438