Krylov subspace methods for the generalized Sylvester equation

被引:15
作者
Bao, Liang
Lin, Yiqin
Wei, Yimin [1 ]
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Galerkin method; generalized Sylvester equation; minimal residual method; Krylov subspace;
D O I
10.1016/j.amc.2005.07.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we propose Galerkin and minimal residual methods for iteratively solving generalized Sylvester equations of the form AXB - X = C. The algorithms use Krylov subspace for which orthogonal basis are generated by the Arnoldi process and reduce the storage space required by using the structure of the matrix. We give some convergence results and present numerical experiments for large problems to show that our methods are efficient. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:557 / 573
页数:17
相关论文
共 9 条
[1]  
Datta B. N., 1986, Computational and Combinatorial Methods in Systems Theory, P201
[2]  
Demmel JW., 1997, APPL NUMERICAL LINEA
[3]   Block Krylov subspace methods for solving large Sylvester equations [J].
El Guennouni, A ;
Jbilou, K ;
Riquet, AJ .
NUMERICAL ALGORITHMS, 2002, 29 (1-3) :75-96
[4]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[5]   HESSENBERG-SCHUR METHOD FOR THE PROBLEM AX+XB=C [J].
GOLUB, GH ;
NASH, S ;
VANLOAN, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (06) :909-913
[6]   KRYLOV-SUBSPACE METHODS FOR THE SYLVESTER EQUATION [J].
HU, DY ;
REICHEL, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 172 :283-313
[7]   Block Krylov subspace methods for large algebraic Riccati equations [J].
Jbilou, K .
NUMERICAL ALGORITHMS, 2003, 34 (2-4) :339-353
[8]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[9]  
SAAD Y, 1981, MATH COMPUT, V37, P105, DOI 10.1090/S0025-5718-1981-0616364-6