A Pair of Generalized Derivations in Prime, Semiprime Rings and in Banach Algebras

被引:0
作者
Dhara, Basudeb [1 ]
Rahmani, Venus [2 ]
Sahebi, Shervin [2 ]
机构
[1] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[2] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran 13185768, Iran
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2021年 / 39卷 / 04期
关键词
Prime ring; Semiprime ring; Generalized derivation; Utumi quotient ring; Banach algebra;
D O I
10.5269/bspm.37818
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n >= 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy) + G(yx))(n) = (xy +/- yx) for all x, y is an element of I, then one of the following holds: 1. R is commutative; 2. n = 1 and H(x) = x and G(x) = +/- x for all x is an element of R. Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 50 条
[41]   PRIME AND SEMIPRIME RINGS INVOLVING MULTIPLICATIVE (GENERALIZED)-SKEW DERIVATIONS [J].
Boua, A. ;
Ashraf, M. ;
Abdelwanis, A. Y. .
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01) :89-104
[42]   Orthogonal generalized (σ, τ)-derivations of semiprime rings [J].
Golbasi, O. ;
Aydin, N. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (06) :979-983
[43]   Generalized reverse derivations on semiprime rings [J].
A. Aboubakr ;
S. González .
Siberian Mathematical Journal, 2015, 56 :199-205
[44]   On semiprime rings with multiplicative (generalized)-derivations [J].
Khan S. .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (1) :119-128
[45]   On Semiprime Rings with Generalized Derivations [J].
Khan, Mohd Rais ;
Hasnain, Mohammad Mueenul .
KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (04) :565-571
[46]   On generalized ()-derivations in semiprime rings with involution [J].
Ashraf, Mohammad ;
Nadeem-ur-Rehman ;
Ali, Shakir ;
Mozumder, Muzibur Rahman .
MATHEMATICA SLOVACA, 2012, 62 (03) :451-460
[47]   AN IDENTITY WITH DERIVATIONS ON RINGS AND BANACH ALGEBRAS [J].
Fosner, Ajda ;
Fosner, Maja ;
Vukman, Joso .
DEMONSTRATIO MATHEMATICA, 2008, 41 (03) :525-530
[48]   Orthogonal generalized (σ, τ)-derivations of semiprime rings [J].
Oznur Gölbaşi ;
Neşet Aydin .
Siberian Mathematical Journal, 2007, 48 :979-983
[49]   ON n-CENTRALIZING GENERALIZED DERIVATIONS IN SEMIPRIME RINGS WITH APPLICATIONS TO C*-ALGEBRAS [J].
Dhara, Basudeb ;
Ali, Shakir .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (06)
[50]   Generalized derivations on Lie ideals in prime rings [J].
Dhara, Basudeb ;
Kar, Sukhendu ;
Mondal, Sachhidananda .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) :179-190