Uniform K-homology theory

被引:16
作者
Spakula, Jan [1 ]
机构
[1] Univ Munster, Math Inst, D-48149 Munster, Germany
关键词
Analytic K-homology; Coarse assembly map; Uniform Roe algebra; BAUM-CONNES CONJECTURE; OPEN MANIFOLDS; HILBERT-SPACE; INDEX THEOREM; ALGEBRAS;
D O I
10.1016/j.jfa.2009.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a uniform version of analytic K-homology theory for separable, proper metric spaces. Furthermore, we define an index map from this theory into the K-theory of uniform Roe C*-algebras, analogous to the coarse assembly map from analytic K-homology into the K-theory of Roe C*-algebras. We show that our theory has a Mayer-Vietoris sequence. We prove that for a torsion-free countable discrete group Gamma, the direct limit of the uniform K-homology of the Rips complexes of Gamma, lim(d ->infinity) K(*)(u)(P(d) Gamma), is isomorphic to K(*)(top)(Gamma, l(infinity) Gamma), the left-hand side of the Baum-Connes conjecture with coefficients in l(infinity)Gamma. In particular, this provides a computation of the uniform K-homology groups for some torsion-free groups. As an application of uniform K-homology, we prove a criterion for amenability in terms of vanishing of a "fundamental class", in spirit of similar criteria in uniformly finite homology and K-theory of uniform Roe algebras. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:88 / 121
页数:34
相关论文
共 16 条
[1]  
[Anonymous], U LECT SER AM MATH S
[2]  
[Anonymous], 2000, OXFORD MATH MONOGR
[3]  
BAUM P., 1993, CONT MATH, V167, P240
[4]  
Blackadar B., 1998, K-Theory for Operator Algebras
[5]  
Block J., 1992, J. Am. Math. Soc, V5, P907, DOI [10.1090/S0894-0347-1992-1145337-X, DOI 10.1090/S0894-0347-1992-1145337-X, 10.2307/2152713, DOI 10.2307/2152713]
[6]  
Block J., 1993, AMS IP STUD ADV MA 1, V2.1, P522
[7]   Property a, partial translation structures, and uniform embeddings in groups [J].
Brodzki, J. ;
Niblo, G. A. ;
Wright, N. J. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 :479-497
[8]   The K-theory of Gromov's translation algebras and the amenability of discrete groups [J].
Elek, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (09) :2551-2553
[9]   E-theory and KK-theory for groups which act properly and isometrically on Hilbert space [J].
Higson, N ;
Kasparov, G .
INVENTIONES MATHEMATICAE, 2001, 144 (01) :23-74
[10]   EQUIVARIANT KK-THEORY AND THE NOVIKOV-CONJECTURE [J].
KASPAROV, GG .
INVENTIONES MATHEMATICAE, 1988, 91 (01) :147-201