Proposal for a phase-coherent thermoelectric transistor

被引:52
作者
Giazotto, F. [1 ,2 ]
Robinson, J. W. A. [3 ]
Moodera, J. S. [4 ,5 ]
Bergeret, F. S. [6 ,7 ]
机构
[1] Inst Nanosci CNR, NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Francis Bitter Magnet Lab, Cambridge, MA 02139 USA
[6] UPV, EHU, Ctr Mixto CSIC, CFM,MPC, E-20018 San Sebastian, Spain
[7] DIPC, E-20018 San Sebastian, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ELECTRON-SPIN POLARIZATION; TUNNEL-JUNCTIONS; MAGNETIC-FIELD; SUPERCONDUCTOR; BARRIERS; ZERO;
D O I
10.1063/1.4893443
中图分类号
O59 [应用物理学];
学科分类号
摘要
Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to similar to 45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 29 条
  • [1] [Anonymous], NATURE MAT
  • [2] Ashcroft N., 2011, Solid State Physics
  • [3] Hybrid superconducting quantum magnetometer
    Giazotto, F.
    Taddei, F.
    [J]. PHYSICAL REVIEW B, 2011, 84 (21):
  • [4] Superconducting quantum interference proximity transistor
    Giazotto, Francesco
    Peltonen, Joonas T.
    Meschke, Matthias
    Pekola, Jukka P.
    [J]. NATURE PHYSICS, 2010, 6 (04) : 254 - 259
  • [5] GOLUBOV AA, 1989, ZH EKSP TEOR FIZ+, V96, P1420
  • [6] SPIN-FILTER EFFECT OF FERROMAGNETIC EUROPIUM SULFIDE TUNNEL BARRIERS
    HAO, X
    MOODERA, JS
    MESERVEY, R
    [J]. PHYSICAL REVIEW B, 1990, 42 (13): : 8235 - 8243
  • [7] THIN-FILM SUPERCONDUCTOR IN AN EXCHANGE FIELD
    HAO, X
    MOODERA, JS
    MESERVEY, R
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (10) : 1342 - 1345
  • [8] Supercurrent-carrying density of states in diffusive mesoscopic Josephson weak links - art. no. 184513
    Heikkilä, TT
    Särkkä, J
    Wilhelm, FK
    [J]. PHYSICAL REVIEW B, 2002, 66 (18) : 1 - 10
  • [9] Non-hysteretic superconducting quantum interference proximity transistor with enhanced responsivity
    Jabdaraghi, R. N.
    Meschke, M.
    Pekola, J. P.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (08)
  • [10] Phase controlled superconducting proximity effect probed by tunneling spectroscopy
    le Sueur, H.
    Joyez, P.
    Pothier, H.
    Urbina, C.
    Esteve, D.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (19)