Pareto-optimal solutions in fuzzy multi-objective linear programming

被引:75
|
作者
Jimenez, Mariano [1 ]
Bilbao, Amelia [2 ]
机构
[1] Univ Basque Country, Dpto Econ Aplicada 1, San Sebastian, Spain
[2] Univ Oviedo, Dpto Econ Cuantitat, E-33006 Oviedo, Spain
关键词
Multi-objective programming; Goal programming; Fuzzy mathematical programming; Fuzzy-efficient solution; Pareto-optimal solution; Two-phase method; MEMBERSHIP FUNCTIONS; 2-PHASE APPROACH;
D O I
10.1016/j.fss.2008.12.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of solving multi-objective linear-programming problems, by assuming that the decision maker has fuzzy goals for each of the objective functions, is addressed. Several methods have been proposed in the literature in order to obtain fuzzy-efficient solutions to fuzzy multi-objective programming problems. In this paper we show that, in the case that one of our goals is fully achieved, a fuzzy-efficient solution may not be Pareto-optimal and therefore we propose a general procedure to obtain a non-dominated solution, which is also fuzzy-efficient. Two numerical examples illustrate our procedure. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2714 / 2721
页数:8
相关论文
共 50 条
  • [11] In search of proper Pareto-optimal solutions using multi-objective evolutionary algorithms
    Shukla, Pradyumn Kumar
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 1013 - 1020
  • [12] Pareto-Optimal Multi-objective Inversion of Geophysical Data
    Schnaidt, Sebastian
    Conway, Dennis
    Krieger, Lars
    Heinson, Graham
    PURE AND APPLIED GEOPHYSICS, 2018, 175 (06) : 2221 - 2236
  • [13] Pareto-optimal sampling for multi-objective protein sequence design
    Luo, Jiaqi
    Ding, Kerr
    Luo, Yunan
    ISCIENCE, 2025, 28 (03)
  • [14] A multi-objective evolutionary approach to Pareto-optimal model trees
    Czajkowski, Marcin
    Kretowski, Marek
    SOFT COMPUTING, 2019, 23 (05) : 1423 - 1437
  • [15] A Pareto-optimal genetic algorithm for warehouse multi-objective optimization
    Poulos, PN
    Rigatos, GG
    Tzafestas, SG
    Koukos, AK
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (06) : 737 - 749
  • [16] A multi-objective evolutionary approach to Pareto-optimal model trees
    Marcin Czajkowski
    Marek Kretowski
    Soft Computing, 2019, 23 : 1423 - 1437
  • [17] A Multi-objective GA-based Fuzzy Modeling Approach for Constructing Pareto-optimal Fuzzy systems
    Zong-Yi, Xing
    Yuan-Long, Hou
    Yong, Zhang
    Li-Min, Jia
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (5A):
  • [18] Multi-objective Pareto-optimal control: an application to wastewater management
    L. J. Alvarez-Vázquez
    N. García-Chan
    A. Martínez
    M. E. Vázquez-Méndez
    Computational Optimization and Applications, 2010, 46 : 135 - 157
  • [19] Multi-objective Pareto-optimal control: an application to wastewater management
    Alvarez-Vazquez, L. J.
    Garcia-Chan, N.
    Martinez, A.
    Vazquez-Mendez, M. E.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (01) : 135 - 157
  • [20] A Multi-Objective Pareto-Optimal Genetic Algorithm for QoS Multicasting
    Rai, S. C.
    Misra, B. B.
    Nayak, A. K.
    Mall, R.
    Pradhan, S.
    2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 1303 - +