Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: A pQCT study

被引:121
作者
Wilks, D. C. [1 ,2 ]
Winwood, K. [1 ]
Gilliver, S. F. [1 ]
Kwiet, A. [3 ,4 ]
Chatfield, M. [2 ]
Michaelis, I. [3 ,4 ]
Sun, L. W. [3 ,4 ]
Ferretti, J. L. [5 ]
Sargeant, A. J. [1 ,6 ]
Felsenberg, D. [3 ,4 ]
Rittweger, J. [1 ]
机构
[1] Manchester Metropolitan Univ, Inst Biomed Res Human Movement & Hlth, Manchester M1 5GD, Lancs, England
[2] MRC Human Nutr Res, Cambridge, England
[3] Free Univ Berlin, Charite Univ Med Berlin, Ctr Mnscle & Bone Res, D-1000 Berlin, Germany
[4] Humboldt Univ, D-1086 Berlin, Germany
[5] Natl Univ Rosario, Ctr P Ca Metab Studies, Rosario, Santa Fe, Argentina
[6] Vrije Univ Amsterdam, Fac Human Movement Sci, Amsterdam, Netherlands
基金
英国医学研究理事会;
关键词
Veteran athletes; Track and field runners; Race-walking; Bone strength; Volumetric bone mineral density; Exercise; QUANTITATIVE COMPUTED-TOMOGRAPHY; PHYSICAL-ACTIVITY; MINERAL DENSITY; MUSCLE STRENGTH; BENEFITS; PLAYERS; SPORTS; TENNIS; GIRLS; SIZE;
D O I
10.1016/j.bone.2009.03.660
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mechanical loading is thought to be a determinant of bone mass and geometry. Both ground reaction forces and tibial strains increase with running speed. This study investigates the hypothesis that surrogates of bone strength in male and female master sprinters, middle and long distance runners and race-walkers vary according to discipline-specific mechanical loading from sedentary controls. Bone scans were obtained by peripheral Quantitative Computed Tomography (pQCT) from the tibia and from the radius in 106 Sprinters, 52 middle distance runners, 93 long distance runners and 49 race-walkers who were competing at master championships, and who were aged between 35 and 94 years. Seventy-five age-matched, sedentary people served as control group. Most athletes of this Study had started to practice their athletic discipline after the age of 20, but the current training regime had typically been maintained for more than a decade. As hypothesised, tibia diaphyseal bone mineral content (vBMC), cortical area and polar moment of resistance were largest in sprinters, followed in descending Order by middle and long distance runners, race-walkers and controls. When compared to control people, the differences in these measures were always >13% in male and >23% in female sprinters (p<0.001). Similarly, the periosteal circumference in the tibia shaft was larger in male and female sprinters by 4% and 8%, respectively, compared to controls (p<0.001). Epiphyseal group differences were predominantly found for trabecular vBMC in both male and female sprinters, who had 15% and 18% larger Values, respectively, than controls (p<0.001). In contrast, a reverse pattern was found for cortical vBMD in the tibia, and only few group differences of lower magnitude were found between athletes and control people for the radius. In conclusion, tibial bone strength indicators seemed to be related to exercise-specific peak forces, whilst cortical density was inversely related to running distance. These results may be explained in two, non-exclusive ways. Firstly, greater skeletal size may allow larger muscle forces and power to be exerted, and thus bias towards engagement in athletics. Secondly, musculoskeletal forces related to running can induce skeletal adaptation and thus enhance bone strength. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 40 条
[1]   Bone mass and bone turnover in power athletes, endurance athletes, and controls: A 12-month longitudinal study [J].
Bennell, KL ;
Malcolm, SA ;
Khan, KM ;
Thomas, SA ;
Reid, SJ ;
Brukner, PD ;
Ebeling, PR ;
Wark, JD .
BONE, 1997, 20 (05) :477-484
[2]   Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs [J].
Braun, MJ ;
Meta, MD ;
Schneider, P ;
Reiners, C .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (08) :2279-2294
[3]   In vivo measurement of human tibial strains during vigorous activity [J].
Burr, DB ;
Milgrom, C ;
Fyhrie, D ;
Forwood, M ;
Nyska, M ;
Finestone, A ;
Hoshaw, S ;
Saiag, E ;
Simkin, A .
BONE, 1996, 18 (05) :405-410
[4]   BONE REMODELING IN RESPONSE TO INVIVO FATIGUE MICRODAMAGE [J].
BURR, DB ;
MARTIN, RB ;
SCHAFFLER, MB ;
RADIN, EL .
JOURNAL OF BIOMECHANICS, 1985, 18 (03) :189-&
[5]  
Dinc H, 1996, CALCIFIED TISSUE INT, V58, P398, DOI 10.1007/s002239900065
[6]   Nondestructive determination of iliac crest cancellous bone strength by pQCT [J].
Ebbesen, EN ;
Thomsen, JS ;
Mosekilde, L .
BONE, 1997, 21 (06) :535-540
[7]   A COMPARISON OF BONE-MINERAL DENSITIES AMONG FEMALE ATHLETES IN IMPACT LOADING AND ACTIVE LOADING SPORTS [J].
FEHLING, PC ;
ALEKEL, L ;
CLASEY, J ;
RECTOR, A ;
STILLMAN, RJ .
BONE, 1995, 17 (03) :205-210
[8]  
FERRETTI JL, 1999, PERIPHERAL QUANTITAT
[9]   PHYSICAL-ACTIVITY AND BONE MASS - EXERCISES IN FUTILITY [J].
FORWOOD, MR ;
BURR, DB .
BONE AND MINERAL, 1993, 21 (02) :89-112
[10]   BONE MASS AND THE MECHANOSTAT - A PROPOSAL [J].
FROST, HM .
ANATOMICAL RECORD, 1987, 219 (01) :1-9