On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator

被引:12
作者
Halffer, Bernard [1 ,2 ]
Sundqvist, Mikael Persson [3 ]
机构
[1] Univ Nantes, Lab Mathemat Jean Leray, 2 Rue Houssinigre, F-44322 Nantes, France
[2] Univ Paris 11, Math Lab, Orsay, France
[3] Lund Univ, Dept Math Sci, Box 118, S-22100 Lund, Sweden
关键词
Pauli operator; Dirichlet; Semiclassical; Torsion; MAXIMUM-PRINCIPLES; MAGNETIC-FIELD; MULTIPLE WELLS; EIGENVALUE; INEQUALITY; BOUNDS;
D O I
10.1016/j.jmaa.2016.11.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We complete and improve the results of a recent paper by Ekholm, Kovarik and Portmann in connection with a question of C. Guillarmou about the semiclassical expansion of the lowest eigenvalue of the Pauli operator with Dirichlet conditions. We exhibit connections with the properties of the torsion function in mechanics, the exit time of a Brownian motion and the analysis of the low eigenvalues of some Witten Laplacian. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 153
页数:16
相关论文
共 38 条
[1]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[2]  
[Anonymous], 2006, MEM SOC MATH FR
[3]   BOUNDS FOR SOLUTIONS OF POISSON PROBLEMS AND APPLICATIONS TO NONLINEAR EIGENVALUE PROBLEMS [J].
BANDLE, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (01) :146-152
[4]   BROWNIAN-MOTION AND THE FUNDAMENTAL-FREQUENCY OF A DRUM [J].
BANUELOS, R ;
CARROLL, T .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (03) :575-602
[5]  
Banuelos R., 2011, MATH P R IR ACAD A, V111A, P1
[6]  
Bovier A, 2005, J EUR MATH SOC, V7, P69
[7]  
Bovier A, 2004, J EUR MATH SOC, V6, P399
[8]  
Cycon H. L., 1987, TEXT MONOGRAPHS PHY
[9]  
Davies E.B, 1995, CAMBRIDGE STUDIES AD, V42
[10]   Estimates for the lowest eigenvalue of magnetic Laplacians [J].
Ekholm, Tomas ;
Kovarik, Hynek ;
Portmann, Fabian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) :330-346