Multiplicity of solutions for a class of fourth elliptic equations

被引:34
作者
Wang, Weihua [1 ,2 ]
Zang, Aibin [2 ,3 ]
Zhao, Peihao [2 ]
机构
[1] Putian Univ, Dept Math, Putian 351100, Fujian, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
[3] Yichun Univ, Sch Math & Comp Sci, Yichun 336000, Jiangxi, Peoples R China
关键词
del-condition; Linking; Biharmonic equation; NONTRIVIAL SOLUTIONS; LINKING; THEOREM;
D O I
10.1016/j.na.2008.10.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there exist at least three nontrivial solutions for a class of fourth elliptic equations under Navier boundary conditions by linking approaches. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4377 / 4385
页数:9
相关论文
共 14 条
[1]  
Adams R.A., 2003, Sobolev Space, Vsecond
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[4]  
Bonder JF, 2002, NONLINEAR ANAL-THEOR, V49, P1037
[5]  
Choi QH, 1999, ACTA MATH SCI, V19, P361
[6]   An application of a variational linking theorem to a nonlinear biharmonic equation [J].
Jung, T ;
Choi, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :3695-3705
[7]   LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS [J].
LAZER, AC ;
MCKENNA, PJ .
SIAM REVIEW, 1990, 32 (04) :537-578
[8]  
Marino A., 1997, ANN SCUOLA NORM SU S, V25, P661
[9]  
Micheletti A.M., 2000, APPL ANAL, V75, P43, DOI DOI 10.1080/00036810008840834
[10]   Nontrivial solutions for some fourth order semilinear elliptic problems [J].
Micheletti, AM ;
Pistoia, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (04) :509-523