CONTROLLABILITY OF A SIMPLIFIED MODEL OF FLUID-STRUCTURE INTERACTION

被引:3
作者
Ervedoza, S. [1 ]
Vanninathan, M. [1 ]
机构
[1] Univ Toulouse, CNRS, UPS IMT, Inst Math Toulouse,UMR5219, F-31062 Toulouse 9, France
关键词
Controllability; observability; fluid-structure interaction; STABILIZATION; WAVES;
D O I
10.1051/cocv/2013075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [ C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180-203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547-552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially symmetric case, this system can be controlled from the outer boundary. This improves previous results [ J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180-203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547-552]. Our proof is based on a spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy for 1d waves.
引用
收藏
页码:547 / 575
页数:29
相关论文
共 22 条
[1]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[2]  
Bardos C., 1989, REND SEM MAT U POLIT, V1988, P11
[3]   Geometric control in the presence of a black box [J].
Burq, N ;
Zworski, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (02) :443-471
[4]  
Burq N, 1997, ASTERISQUE, P167
[5]   A necessary and sufficient condition for the exact controllability of the wave equation [J].
Burq, N ;
Gerard, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :749-752
[6]  
CONCA C, 1995, RAM RES APPL MATH, V38
[7]   ANALYSIS OF THE HUM CONTROL OPERATOR AND EXACT CONTROLLABILITY FOR SEMILINEAR WAVES IN UNIFORM TIME [J].
Dehman, B. ;
Lebeau, G. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (02) :521-550
[8]  
Ervedoza S., 2011, CONTROL PARTIAL DIFF
[9]   A SYSTEMATIC METHOD FOR BUILDING SMOOTH CONTROLS FOR SMOOTH DATA [J].
Ervedoza, Sylvain ;
Zuazua, Enrique .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (04) :1375-1401
[10]   Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes [J].
Ervedoza, Sylvain .
NUMERISCHE MATHEMATIK, 2009, 113 (03) :377-415