Nonlinear perturbations of a p(x)-Laplacian equation with critical growth in RN

被引:15
作者
Alves, Claudianor O. [1 ]
Ferreira, Marcelo C. [1 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
关键词
Variational methods; p(x)-Laplacian; critical growth; ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; REGULARITY; EXISTENCE; MULTIPLICITY; THEOREMS;
D O I
10.1002/mana.201200336
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of solution for a class of p(x)-Laplacian equations where the nonlinearity has a critical growth. Here, we consider two cases: the first case involves the situation where the variable exponents are periodic functions. The second one involves the case where the variable exponents are nonperiodic perturbations. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:849 / 868
页数:20
相关论文
共 28 条
[1]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Existence of solution for a degenerate p(x)-Laplacian equation in RN [J].
Alves, Claudianor O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :731-742
[4]  
Alves CO, 2006, DIFFER INTEGRAL EQU, V19, P143
[5]  
Alves CO, 2010, DIFFER INTEGRAL EQU, V23, P113
[6]  
Alves CO, 2006, PROG NONLINEAR DIFFE, V66, P17
[7]   Nonlinear perturbations of a periodic elliptic problem with critical growth [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :133-146
[8]  
[Anonymous], 1983, Orlicz spaces and modular spaces, Lecture Note in Mahtematics
[9]  
Antontsev S.N., 2006, Ann. Univ. Ferrara. Sez., VVII, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
[10]   On localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneracy [J].
Antontsev, SN ;
Shmarev, SI .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (05) :765-782