Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model

被引:71
作者
Funk, Sebastian [1 ]
Camacho, Anton [1 ]
Kucharski, Adam J. [1 ]
Eggo, Rosalind M. [1 ]
Edmunds, W. John [1 ]
机构
[1] London Sch Hyg & Trop Med, Ctr Math Modelling Infect Dis, London, England
基金
英国医学研究理事会;
关键词
Forecasting; Real-time modelling; Infectious disease dynamics; Outbreak; EBOLA-VIRUS DISEASE;
D O I
10.1016/j.epidem.2016.11.003
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Real-time forecasts of infectious diseases can help public health planning, especially during outbreaks. If forecasts are generated from mechanistic models, they can be further used to target resources or to compare the impact of possible interventions. However, paremeterising such models is often difficult in real time, when information on behavioural changes, interventions and routes of transmission are not readily available. Here, we present a semi-mechanistic model of infectious disease dynamics that was used in real time during the 2013-2016 West African Ebola epidemic, and show fits to a Ebola Forecasting Challenge conducted in late 2015 with simulated data mimicking the true epidemic. We assess the performance of the model in different situations and identify strengths and shortcomings of our approach. Models such as the one presented here which combine the power of mechanistic models with the flexibility to include uncertainty about the precise outbreak dynamics may be an important tool in combating future outbreaks. (c) 2016 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 20 条
[1]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[2]  
[Anonymous], 2013, Bayesian data analysis, third edition
[3]  
[Anonymous], PLOS CURR
[4]  
[Anonymous], 2008, MODELING INFECT DIS, DOI DOI 10.1515/9781400841035
[5]   Potential for large outbreaks of Ebola virus disease [J].
Camacho, A. ;
Kucharski, A. J. ;
Funk, S. ;
Breman, J. ;
Piot, P. ;
Edmunds, W. J. .
EPIDEMICS, 2014, 9 :70-78
[6]   Estimating the probability of demonstrating vaccine efficacy in the declining Ebola epidemic: a Bayesian modelling approach [J].
Camacho, Anton ;
Eggo, Rosalind M. ;
Funk, Sebastian ;
Watson, Conall H. ;
Kucharski, Adam J. ;
Edmunds, W. John .
BMJ OPEN, 2015, 5 (12)
[7]   Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa [J].
Carroll, Miles W. ;
Matthews, David A. ;
Hiscox, Julian A. ;
Elmore, Michael J. ;
Pollakis, Georgios ;
Rambaut, Andrew ;
Hewson, Roger ;
Garcia-Dorival, Isabel ;
Bore, Joseph Akoi ;
Koundouno, Raymond ;
Abdellati, Said ;
Afrough, Babak ;
Aiyepada, John ;
Akhilomen, Patience ;
Asogun, Danny ;
Atkinson, Barry ;
Badusche, Marlis ;
Bah, Amadou ;
Bate, Simon ;
Baumann, Jan ;
Becker, Dirk ;
Becker-Ziaja, Beate ;
Bocquin, Anne ;
Borremans, Benny ;
Bosworth, Andrew ;
Boettcher, Jan Peter ;
Cannas, Angela ;
Carletti, Fabrizio ;
Castilletti, Concetta ;
Clark, Simon ;
Colavita, Francesca ;
Diederich, Sandra ;
Donatus, Adomeh ;
Duraffour, Sophie ;
Ehichioya, Deborah ;
Ellerbrok, Heinz ;
Fernandez-Garcia, Maria Dolores ;
Fizet, Alexandra ;
Fleischmann, Erna ;
Gryseels, Sophie ;
Hermelink, Antje ;
Hinzmann, Julia ;
Hopf-Guevara, Ute ;
Ighodalo, Yemisi ;
Jameson, Lisa ;
Kelterbaum, Anne ;
Kis, Zoltan ;
Kloth, Stefan ;
Kohl, Claudia ;
Korva, Misa .
NATURE, 2015, 524 (7563) :97-U201
[8]  
Center for the Mathematical Modelling of Infectious Diseases, 2015, VIS PROJ EB OUTBR W
[9]   The Brownian movement and stochastic equations [J].
Doob, JL .
ANNALS OF MATHEMATICS, 1942, 43 :351-369
[10]   Capturing the time-varying drivers of an epidemic using stochastic dynamical systems [J].
Dureau, Joseph ;
Kalogeropoulos, Konstantinos ;
Baguelin, Marc .
BIOSTATISTICS, 2013, 14 (03) :541-555