Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain

被引:111
|
作者
Bellissimi, Eleonora [1 ,2 ]
van Dijken, Johannes P. [3 ]
Pronk, Jack T. [1 ,2 ]
van Maris, Antonius J. A. [1 ,2 ]
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Kluyver Ctr Genom Ind Fermentat, Delft, Netherlands
[3] Bird Engn BV, Schiedam, Netherlands
关键词
Saccharomyces cerevisiae; xylose; acetic acid; lignocellulose; stress; xylose isomerase; XYLITOL DEHYDROGENASE; BUFFERING CAPACITY; ETHANOL; GROWTH; LIGNOCELLULOSE; INHIBITION; GLUCOSE; YEASTS; ADAPTATION; RESISTANCE;
D O I
10.1111/j.1567-1364.2009.00487.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L-1 acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (< 0.10 g L-1) in all cultures. Xylose fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.
引用
收藏
页码:358 / 364
页数:7
相关论文
共 50 条
  • [1] Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production
    Huang, Mengtian
    Cui, Xinxin
    Zhang, Peining
    Jin, Zhuocheng
    Li, Huanan
    Liu, Jiashu
    Jiang, Zhengbing
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2024, 54 (08): : 1058 - 1067
  • [2] Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    Kuyper, M
    Hartog, MMP
    Toirkens, MJ
    Almering, MJH
    Winkler, AA
    van Dijken, JP
    Pronk, JT
    FEMS YEAST RESEARCH, 2005, 5 (4-5) : 399 - 409
  • [3] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Vilela, Leonardo de Figueiredo
    Gomes de Araujo, Veronica Parente
    Paredes, Raquel de Sousa
    da Silva Bon, Elba Pinto
    Goncalves Torres, Fernando Araripe
    Neves, Bianca Cruz
    Araujo Eleutherio, Elis Cristina
    AMB EXPRESS, 2015, 5
  • [4] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Leonardo de Figueiredo Vilela
    Verônica Parente Gomes de Araujo
    Raquel de Sousa Paredes
    Elba Pinto da Silva Bon
    Fernando Araripe Gonçalves Torres
    Bianca Cruz Neves
    Elis Cristina Araújo Eleutherio
    AMB Express, 5
  • [5] Directed Evolution of Xylose Isomerase for Improved Xylose Catabolism and Fermentation in the Yeast Saccharomyces cerevisiae
    Lee, Sun-Mi
    Jellison, Taylor
    Alper, Hal S.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (16) : 5708 - 5716
  • [6] Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress
    Ko, Ja Kyong
    Um, Youngsoon
    Lee, Sun-Mi
    BIORESOURCE TECHNOLOGY, 2016, 222 : 422 - 430
  • [7] Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    Kaisa Karhumaa
    Rosa Garcia Sanchez
    Bärbel Hahn-Hägerdal
    Marie-F Gorwa-Grauslund
    Microbial Cell Factories, 6
  • [8] Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    Karhumaa, Kaisa
    Garcia Sanchez, Rosa
    Hahn-Hagerdal, Barbel
    Gorwa-Grauslund, Marie-F
    MICROBIAL CELL FACTORIES, 2007, 6 (1)
  • [9] Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
    Casey, Elizabeth
    Sedlak, Miroslav
    Ho, Nancy W. Y.
    Mosier, Nathan S.
    FEMS YEAST RESEARCH, 2010, 10 (04) : 385 - 393
  • [10] Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro
    Suk-Jin Ha
    Soo Rin Kim
    Jin-Ho Choi
    Myeong Soo Park
    Yong-Su Jin
    Applied Microbiology and Biotechnology, 2011, 92 : 77 - 84