Characterization of fatigue behavior of Al-Li alloy 2099

被引:19
作者
Cisko, A. R. [1 ]
Jordon, J. B. [1 ]
Avery, D. Z. [1 ]
McClelland, Z. B. [2 ]
Liu, T. [3 ]
Rushing, T. W. [2 ]
Brewer, L. N. [3 ]
Allison, P. G. [1 ]
Garcia, L. [2 ]
机构
[1] Univ Alabama, Dept Mech Engn, Tuscaloosa, AL 35487 USA
[2] US Army, Geotech & Struct Lab, Res & Dev Ctr, Vicksburg, MS USA
[3] Univ Alabama, Dept Met Engn, Tuscaloosa, AL 35487 USA
关键词
CRACK-GROWTH; STRESS; PRECIPITATION;
D O I
10.1016/j.matchar.2019.03.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experiments and modeling were performed to quantify the microstructure-fatigue properties relationship of wrought aluminum-lithium alloy 2099 (AA2099) plate. Microstructural morphology was examined via optical microscopy, SEM, and TEM techniques. The mechanical properties were determined through monotonic tensile and fully reversed fatigue testing. The rolled AA2099 was shown to have large elongated columnar grains several millimeters long. Metastable secondary phases, T-1 and delta', were observed and provided strength to the material. Fractography determined fatigue cracks initiate from copper-rich constituent particles. These particles ranged from 1 to 25 pm in size, with an average size of 12 pm. The size of these intermetallic Cu-rich particles influenced the fatigue life of AA2099. Lastly, a microstructure-sensitive fatigue model was used to correlate the various effects of intermetallic particle sizes on the fatigue life of AA2099.
引用
收藏
页码:496 / 505
页数:10
相关论文
共 44 条
  • [31] Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys
    Rodriguez, R. I.
    Jordon, J. B.
    Allison, P. G.
    Rushing, T. W.
    Garcia, L.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 742 : 255 - 268
  • [32] Low-cycle fatigue of dissimilar friction stir welded aluminum alloys
    Rodriguez, R. I.
    Jordon, J. B.
    Allison, P. G.
    Rushing, T.
    Garcia, L.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 654 : 236 - 248
  • [33] Wu X. J., 1994, ORIENTATION DEPENDEN, V25
  • [34] FATIGUE AND FRACTURE-BEHAVIOR OF AN ALUMINUM-LITHIUM ALLOY-8090-T6 AT AMBIENT AND CRYOGENIC TEMPERATURE
    XU, YB
    WANG, L
    ZHANG, Y
    WANG, ZG
    HU, QZ
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1991, 22 (03): : 723 - 729
  • [35] Micro structure-based multistage fatigue modeling of aluminum alloy 7075-T651
    Xue, Y.
    McDowell, D. L.
    Horstemeyer, M. F.
    Dale, M. H.
    Jordon, J. B.
    [J]. ENGINEERING FRACTURE MECHANICS, 2007, 74 (17) : 2810 - 2823
  • [36] Zhang F, 2014, RARE METAL MAT ENG, V43, P1312
  • [37] Fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy
    Zhong, Jing
    Zhong, Shen
    Zheng, Zi-qiao
    Zhang, Hai-feng
    Luo, Xian-fu
    [J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (02) : 303 - 309
  • [38] 2012, THEOR APPL FRACT MEC, V60, P1, DOI DOI 10.1016/J.TAFMEC.2012.06.001
  • [39] 2016, CORROS SCI, V107, P41, DOI DOI 10.1016/J.CORSCI.2016.02.018
  • [40] 2014, INT J FATIGUE, V59, P244, DOI DOI 10.1016/J.IJFATIGUE.2013.08.013