Automatic lesion border selection in dermoscopy images using morphology and color features

被引:11
作者
Mishra, Nabin K. [1 ]
Kaur, Ravneet [2 ]
Kasmi, Reda [3 ,4 ]
Hagerty, Jason R. [1 ]
LeAnder, Robert [2 ]
Stanley, Ronald J. [5 ]
Moss, Randy H. [5 ]
Stoecker, William V. [1 ]
机构
[1] Stoecker & Associates, Rolla, MO USA
[2] Southern Illinois Univ, Dept Elect & Comp Engn, Edwardsville, IL 62026 USA
[3] Univ Bejaia, Dept Elect Engn, Bejaia, Algeria
[4] Univ Bouira, Dept Elect Engn, Bouira, Algeria
[5] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
基金
美国国家卫生研究院;
关键词
border; classifier; dermoscopy; image analysis; lesion segmentation; melanoma; skin cancer; GRADIENT VECTOR FLOW; SKIN-CANCER; SEGMENTATION; DIAGNOSIS; CLASSIFICATION;
D O I
10.1111/srt.12685
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Purpose We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer-aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions. Methods We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a "good-enough" border basis. Morphology and color features inside and outside the automatic border are used to build the model. Results For a random forests classifier applied to an 802-lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases. Conclusion The performance of the classifier-based automatic skin lesion finder is found to be better than any single algorithm used in this research.
引用
收藏
页码:544 / 552
页数:9
相关论文
共 44 条
  • [1] Unsupervised skin lesions border detection via two-dimensional image analysis
    Abbas, Qaisar
    Fondon, Irene
    Rashid, Muhammad
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : E1 - E15
  • [2] [Anonymous], 2011, The cost of cancer
  • [3] [Anonymous], DIGITAL IMAGE PROCES
  • [4] [Anonymous], FORTRAN ORIGINAL L B
  • [5] [Anonymous], 2 INT C DISTR FRAM M
  • [6] [Anonymous], 3 QUADR AUT SKIN CAN
  • [7] An automatic based nonlinear diffusion equations scheme for skin lesion segmentation
    Barcelos, C. A. Z.
    Pires, V. B.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) : 251 - 261
  • [8] Evaluation of digital dermoscopy in a pigmented lesion clinic: Clinician versus computer assessment of malignancy risk
    Boldrick, Jennifer C.
    Layton, Christle J.
    Nguyen, Josephine
    Swetter, Susan M.
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2007, 56 (03) : 417 - 421
  • [9] Pattern analysis: A two-step procedure for the dermoscopic diagnosis of melanoma
    Braun, RP
    Rabinovitz, HS
    Oliviero, M
    Kopf, AW
    Saurat, JH
    [J]. CLINICS IN DERMATOLOGY, 2002, 20 (03) : 236 - 239
  • [10] Geodesic active contours
    Caselles, V
    Kimmel, R
    Sapiro, G
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) : 61 - 79