Bayesian estimation of evoked and induced responses

被引:75
作者
Friston, Karl J.
Henson, Richard
Phillips, Christophe
Mattout, Jeremie
机构
[1] UCL, Neurol Inst, Wellcome Dept Imaging Neurosci, London WC1N 3BG, England
[2] MRC, Cognit & Brain Sci Unit, Cambridge, England
[3] Univ Liege, Ctr Rech Cyclotron, B-4000 Liege, Belgium
基金
英国惠康基金; 英国医学研究理事会;
关键词
D O I
10.1002/hbm.20214
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We describe an extension of our empirical Bayes approach to magnetoencephalography/electroencephalography (MEG/EEG) source reconstruction that covers both evoked and induced responses. The estimation scheme is based on classical covariance component estimation using restricted maximum likelihood (ReML). We have focused previously on the estimation of spatial covariance components under simple assumptions about the temporal correlations. Here we extend the scheme using temporal basis functions to place constraints on the temporal form of the responses. We show how the same scheme can estimate evoked responses that are phase-locked to the stimulus and induced responses that are not. For a single trial the model is exactly the same, In the context of multiple trials, however, the inherent distinction between evoked and induced responses calls for different treatments of the underlying hierarchical multitrial model. We derive the respective models and show how they can be estimated efficiently using ReML. This enables the Bayesian estimation of evoked and induced changes in power or, more generally, the energy of wavelet coefficients.
引用
收藏
页码:722 / 735
页数:14
相关论文
共 32 条
  • [1] BAILLET S, 2004, P 2004 IEEE INT S BI
  • [2] A general linear model for MEG beamformer imaging
    Brookes, MJ
    Gibson, AM
    Hall, SD
    Furlong, PL
    Barnes, GR
    Hillebrand, A
    Singh, KD
    Holliday, IE
    Francis, ST
    Morris, PG
    [J]. NEUROIMAGE, 2004, 23 (03) : 936 - 946
  • [3] Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation
    Cheyne, DL
    Gaetz, W
    Garnero, L
    Lachaux, JP
    Ducorps, A
    Schwartz, D
    Varela, FJ
    [J]. COGNITIVE BRAIN RESEARCH, 2003, 17 (03): : 599 - 611
  • [4] Estimation of neural dynamics from MEG/EEG cortical current density maps: Application, to the reconstruction of large-scale cortical synchrony
    David, O
    Garnero, L
    Cosmelli, D
    Varela, FJ
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (09) : 975 - 987
  • [5] Ensemble methods in machine learning
    Dietterich, TG
    [J]. MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 1 - 15
  • [6] Modulation of oscillatory neuronal synchronization by selective visual attention
    Fries, P
    Reynolds, JH
    Rorie, AE
    Desimone, R
    [J]. SCIENCE, 2001, 291 (5508) : 1560 - 1563
  • [7] The labile brain. I. Neuronal transients and nonlinear coupling
    Friston, KJ
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2000, 355 (1394) : 215 - 236
  • [8] Classical and Bayesian inference in neuroimaging: Theory
    Friston, KJ
    Penny, W
    Phillips, C
    Kiebel, S
    Hinton, G
    Ashburner, J
    [J]. NEUROIMAGE, 2002, 16 (02) : 465 - 483
  • [9] Dynamic imaging of coherent sources:: Studying neural interactions in the human brain
    Gross, J
    Kujala, J
    Hämäläinen, M
    Timmermann, L
    Schnitzler, A
    Salmelin, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) : 694 - 699
  • [10] MAGNETOENCEPHALOGRAPHY - THEORY, INSTRUMENTATION, AND APPLICATIONS TO NONINVASIVE STUDIES OF THE WORKING HUMAN BRAIN
    HAMALAINEN, M
    HARI, R
    ILMONIEMI, RJ
    KNUUTILA, J
    LOUNASMAA, OV
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (02) : 413 - 497