Electro-optical Modeling of High Power Semiconductor Laser for 800 nm Emission with an InGaAsP/GaAs/InGaP Quantum Hetero structure

被引:0
作者
Furtado, M. T. [1 ,2 ]
Moschim, E. [1 ]
机构
[1] Univ Estadual Campinas, Dept Semicondutores Instrumentos & Foton, Fac Engn Eletr & Comp, BR-13081970 Campinas, SP, Brazil
[2] Ctr Tecnol Informacao Renato Archer, Campinas, Brazil
关键词
Semicondutor lasers; quantum heterostrtures; III-V compounds and alloys; optoelectronics; high power lasers; CONTINUOUS-WAVE POWER; WELL LASERS; DIODE-LASERS; ACTIVE-REGION; GAAS; GAIN; BAND; TEMPERATURE;
D O I
10.1109/TLA.2015.7350033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present the electrical-optical modeling of a high power semiconductor laser diode for emission at 800 nm wavelength. We describe a thoroughly detailed procedure for modeling the semiconductor laser device with a Separate Confinement Heterostructure (SCH), based on the material alloys of compounds families, InGaAsP/InGaAsP/InGaP on GaAs substrates. The heterostructure active region produces a peak emission at 0.8 nm. The SCH heterostructure comprises a quantum well 100 A thick of ImGal,AsyPi_y (x = 0.14, y = 0.73) alloy. The quantum barriers layers comprise quaternary materials of composition ImGa(x)As(y)P(1-y) (x = 0.39, y = 0.2). The confining layers of the quaternary SCH heterostrucure involve higher gap materials, such as ternary InGaN or quaternary AlGaInP. Band gaps of quaternary materials in the well and confining layers of the SCH heterostructure correspond to wavelengths of 0.8 gm (Eg = 1.55 eV) and 0.69 gm (Eg = 1.8 eV), respectively.
引用
收藏
页码:2871 / 2878
页数:8
相关论文
共 23 条
[1]  
AGRAWAL GA, 1993, SEMICONDUCTOR LASERS, pCH2
[2]   GaInNAs-Based High-Power and Tapered Laser Diodes for Pumping Applications [J].
Bisping, Dirk ;
Pucicki, Damian ;
Fischer, Marc ;
Koeth, Johannes ;
Zimmermann, Christian ;
Weinmann, Pia ;
Hoefling, Sven ;
Kamp, Martin ;
Forchel, Alfred .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (03) :968-972
[3]   Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers [J].
Botez, D .
APPLIED PHYSICS LETTERS, 1999, 74 (21) :3102-3104
[4]   A MODEL FOR GRIN-SCH-SQW DIODE-LASERS [J].
CHINN, SR ;
ZORY, PS ;
REISINGER, AR .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (11) :2191-2214
[5]  
Cohen-Tanoudji C., 1973, MECANIQUE QUANTIQUE, V1, P68
[6]  
Corzine ScottW., 1993, QUANTUM WELL LASERS, P17
[7]   Efficient High-Power Laser Diodes [J].
Crump, Paul ;
Erbert, Goetz ;
Wenzel, Hans ;
Frevert, Carlo ;
Schultz, Christoph M. ;
Hasler, Karl-Heinz ;
Staske, Ralf ;
Sumpf, Bernd ;
Maassdorf, Andre ;
Bugge, Frank ;
Knigge, Steffen ;
Traenkle, Guenther .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
[8]   Quantum finite square well potential and factorization method [J].
Freitas, G. B. ;
Veigas, R. G. ;
Drigo Filho, E. .
REVISTA BRASILEIRA DE ENSINO DE FISICA, 2010, 32 (01) :1502.1-1502.4
[9]   Beam steering in narrow-stripe high-power 980-nm laser diodes [J].
Herzog, WD ;
Goldberg, BB ;
Ünlü, MS .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (12) :1604-1606
[10]   Coulomb enhancement in InGaAs-GaAs quantum-well lasers [J].
Hsu, CF ;
Zory, PS ;
Wu, CH ;
Emanuel, MA .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) :158-165