Universally optimal designs for computer experiments

被引:0
作者
Xu, HQ [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Nankai Univ, Tianjin 300071, Peoples R China
关键词
computer experiments; Hamming distance; Lee distance; orthogonal arrays; universally optimal designs;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The concept of universal optimality from optimum design theory is introduced into computer experiments, modeled as realizations of stationary Gaussian processes. When the correlation function is a nondecreasing and convex function of a distance measure, it is shown that a design is universally optimal if it is equidistant and of maximum average distance. Examples of universally optimal designs are given with respect to rectangular, Euclidean, Hamming, and Lee distances.
引用
收藏
页码:1083 / 1088
页数:6
相关论文
共 13 条
  • [1] BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
  • [2] BAYESIAN PREDICTION OF DETERMINISTIC FUNCTIONS, WITH APPLICATIONS TO THE DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS
    CURRIN, C
    MITCHELL, T
    MORRIS, M
    YLVISAKER, D
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 953 - 963
  • [3] MINIMAX AND MAXIMIN DISTANCE DESIGNS
    JOHNSON, ME
    MOORE, LM
    YLVISAKER, D
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 26 (02) : 131 - 148
  • [4] Kiefer J., 1975, SURVEY STAT DESIGN L, P333
  • [5] MARTIN RJ, 1982, BIOMETRIKA, V69, P597
  • [6] A COMPARISON OF THREE METHODS FOR SELECTING VALUES OF INPUT VARIABLES IN THE ANALYSIS OF OUTPUT FROM A COMPUTER CODE
    MCKAY, MD
    BECKMAN, RJ
    CONOVER, WJ
    [J]. TECHNOMETRICS, 1979, 21 (02) : 239 - 245
  • [7] EXPLORATORY DESIGNS FOR COMPUTATIONAL EXPERIMENTS
    MORRIS, MD
    MITCHELL, TJ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 43 (03) : 381 - 402
  • [8] Mukerjee R, 1995, ANN STAT, V23, P2102
  • [9] OWEN AB, 1992, STAT SINICA, V2, P439
  • [10] Sacks J., 1989, Statistical Science, V4, P409, DOI DOI 10.1214/SS/1177012413