Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity

被引:18
作者
Bonheure, D [1 ]
机构
[1] Catholic Univ Louvain, Inst Matemat Pure & Appl, B-1348 Louvain, Belgium
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2004年 / 21卷 / 03期
关键词
multitransition heteroclinics and homoclinics; Swift-Hohenberg equation; minimization; saddle-focus equilibrium;
D O I
10.1016/S0294-1449(03)00037-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of stationary solutions of a class of diffusion equations related to the so-called extended Fisher-Kolmogorov equation and the Swift-Hohenberg equation. We prove the existence of multitransition kinks and pulses. These solutions are obtained as local minima of the associated functional. For the Swift-Hohenberg equation, our result partially proves a numerical conjecture. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:319 / 340
页数:22
相关论文
共 20 条
[1]  
Adams R., 1975, Sobolev space
[2]   Heteroclinic connections between nonconsecutive equilibria of a fourth order differential equation [J].
Bonheure, D ;
Sanchez, L ;
Tarallo, M ;
Terracini, S .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (04) :341-356
[3]  
BONHEURE D, IN PRESS ATT SEM MAT
[4]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[5]   BISTABLE SYSTEMS WITH PROPAGATING FRONTS LEADING TO PATTERN-FORMATION [J].
DEE, GT ;
VANSAARLOOS, W .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2641-2644
[6]  
Gomper G., 1994, PHASE TRANSITIONS CR
[7]  
HABETS P, 2001, CD ROM P EQ 10 PRAG
[8]   Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria [J].
Kalies, WD ;
Kwapisz, J ;
VanderVorst, RCAM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (02) :337-371
[9]   Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation [J].
Kalies, WD ;
VanderVorst, RCAM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (02) :209-228
[10]  
KOLMOGOROV A, 1937, B U ETAT MOSCOW, V6, P1