Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers

被引:103
作者
Wang, Youdan
Joshi, Pratixa P.
Hobbs, Kevin L.
Johnson, Matthew B.
Schmidtke, David W.
机构
[1] Univ Oklahoma, Bioengn Ctr, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
[2] Univ Oklahoma, Bioengn Ctr, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA
关键词
NANOCOMPOSITE THIN-FILMS; BEARING OS COMPLEX; GLUCOSE-OXIDASE; ELECTRICAL COMMUNICATION; AMPEROMETRIC BIOSENSORS; HORSERADISH-PEROXIDASE; REAGENTLESS BIOSENSORS; WIRING ENZYMES; ELECTRODES; DNA;
D O I
10.1021/la060857v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we describe the construction of glucose biosensors based on an electrostatic layer-by-layer (LBL) technique. Gold electrodes were initially functionalized with negatively charged 11-mercaptoundecanoic acid followed by alternate immersion in solutions of a positively charged redox polymer, poly[(vinylpyridine)Os(bipyridyl)(2)Cl2+/3+], and a negatively charged enzyme, glucose oxidase (GOX), or a GOX solution containing single-walled carbon nanotubes (SWNTs). The LBL assembly of the multilayer films were characterized by UV-vis spectroscopy, ellipsometry, and cyclic voltammetry, while characterization of the single-walled nanotubes was performed with transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. When the GOX solution contained single-walled carbon nanotubes (GOX-SWNTs), the oxidation peak currents during cyclic voltammetry increased 1.4-4.0 times, as compared to films without SWNTs. Similarly the glucose electro-oxidation current also increased (6-17 times) when SWNTs were present. By varying the number of multilayers, the sensitivity of the sensors could be controlled.
引用
收藏
页码:9776 / 9783
页数:8
相关论文
共 82 条
[1]   Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co-Mo catalysts [J].
Alvarez, WE ;
Pompeo, F ;
Herrera, JE ;
Balzano, L ;
Resasco, DE .
CHEMISTRY OF MATERIALS, 2002, 14 (04) :1853-1858
[2]   ELECTRON-DIFFUSION COEFFICIENTS IN HYDROGELS FORMED OF CROSS-LINKED REDOX POLYMERS [J].
AOKI, A ;
HELLER, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (42) :11014-11019
[3]   Increasing protein stability through control of the nanoscale environment [J].
Asuri, Prashanth ;
Karajanagi, Sandeep S. ;
Yang, Hoichang ;
Yim, Tae-Jin ;
Kane, Ravi S. ;
Dordick, Jonathan S. .
LANGMUIR, 2006, 22 (13) :5833-5836
[4]   Bioelectrochemical single-walled carbon nanotubes [J].
Azamian, BR ;
Davis, JJ ;
Coleman, KS ;
Bagshaw, CB ;
Green, MLH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) :12664-12665
[5]   In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: Design, fluorophore properties, advantages, and disadvantages [J].
Barone, PW ;
Parker, RS ;
Strano, MS .
ANALYTICAL CHEMISTRY, 2005, 77 (23) :7556-7562
[6]   Near-infrared optical sensors based on single-walled carbon nanotubes [J].
Barone, PW ;
Baik, S ;
Heller, DA ;
Strano, MS .
NATURE MATERIALS, 2005, 4 (01) :86-U16
[7]   Side-wall functionalization of single-walled carbon nanotubes with 4-hydroxymethylaniline followed by polymerization of ε-caprolactone [J].
Buffa, F ;
Hu, H ;
Resasco, DE .
MACROMOLECULES, 2005, 38 (20) :8258-8263
[8]   Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J].
Cai, CX ;
Chen, J .
ANALYTICAL BIOCHEMISTRY, 2004, 332 (01) :75-83
[9]   Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors [J].
Callegari, A ;
Cosnier, S ;
Marcaccio, M ;
Paolucci, D ;
Paolucci, F ;
Georgakilas, V ;
Tagmatarchis, N ;
Vázquez, E ;
Prato, M .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (05) :807-810
[10]   Electrical communication between electrodes and enzymes mediated by redox hydrogels [J].
Calvo, EJ ;
Etchenique, R ;
Danilowicz, C ;
Diaz, L .
ANALYTICAL CHEMISTRY, 1996, 68 (23) :4186-4193