Finding the Hannay angle in dissipative oscillatory systems via conservative perturbation theory

被引:6
作者
Chattopadhyay, Rohitashwa [1 ]
Shah, Tirth [2 ,3 ]
Chakraborty, Sagar [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[2] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[3] Univ Erlangen Nurnberg, Dept Phys, Staudtstr 7, D-91058 Erlangen, Germany
关键词
DAMPED HARMONIC-OSCILLATOR; GEOMETRIC PHASE-SHIFTS; CHEMICAL OSCILLATORS; VAN;
D O I
10.1103/PhysRevE.97.062209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Usage of a Hamiltonian perturbation theory for a nonconservative system is counterintuitive and, in general, a technical impossibility by definition. However, the time-independent dual Hamiltonian formalism for the nonconservative systems has opened the door for using various conservative perturbation theories for investigating the dynamics of such systems. Here we demonstrate that the Lie transform Hamiltonian perturbation theory can be adapted to find the perturbative solutions and the frequency corrections for the dissipative oscillatory systems. As a further application, we use the perturbation theory to analytically calculate the Hannay angle for the van der Pol oscillator's limit cycle trajectory when its parameters-the strength of the nonlinearity and the frequency of the linear part-evolve cyclically and adiabatically. For this van der Pol oscillator, we also numerically calculate the corresponding geometric phase and establish its equivalence with the Hannay angle.
引用
收藏
页数:11
相关论文
共 63 条
[51]   GEOMETRICAL PHASE AND AMPLITUDE ACCUMULATIONS IN DISSIPATIVE SYSTEMS WITH CYCLIC ATTRACTORS [J].
NING, CZ ;
HAKEN, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (14) :2109-2112
[52]  
Pancharatnam S., 1956, P INDIAN ACAD SCI A, V44, P398, DOI DOI 10.1007/BF03046050
[53]   LOCALIZED HOLE SOLUTIONS AND SPATIOTEMPORAL CHAOS IN THE 1D COMPLEX GINZBURG-LANDAU EQUATION [J].
POPP, S ;
STILLER, O ;
ARANSON, I ;
WEBER, A ;
KRAMER, L .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3880-3883
[54]   Hamiltonian formulation of nonequilibrium quantum dynamics: Geometric structure of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy [J].
Requist, Ryan .
PHYSICAL REVIEW A, 2012, 86 (02)
[55]   Conservative perturbation theory for nonconservative systems [J].
Shah, Tirth ;
Chattopadhyay, Rohitashwa ;
Vaidya, Kedar ;
Chakraborty, Sagar .
PHYSICAL REVIEW E, 2015, 92 (06)
[56]   Hannay angle and geometric phase shifts under adiabatic parameter changes in classical dissipative systems [J].
Sinitsyn, N. A. ;
Ohkubo, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (26)
[57]   Geometric phase shifts in biological oscillators [J].
Tourigny, David S. .
JOURNAL OF THEORETICAL BIOLOGY, 2014, 355 :239-242
[58]  
Trevisan M.A., 2009, SCHOLARPEDIA, V4, P6923
[59]   The quantum damped harmonic oscillator [J].
Um, CI ;
Yeon, KH ;
George, TF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 362 (2-3) :63-192
[60]   A comparative study of the Hannay's angles associated with a damped harmonic oscillator and a generalized harmonic oscillator [J].
Usatenko, OV ;
Provost, JP ;
Vallee, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10) :2607-2610