Finding the Hannay angle in dissipative oscillatory systems via conservative perturbation theory

被引:6
作者
Chattopadhyay, Rohitashwa [1 ]
Shah, Tirth [2 ,3 ]
Chakraborty, Sagar [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[2] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[3] Univ Erlangen Nurnberg, Dept Phys, Staudtstr 7, D-91058 Erlangen, Germany
关键词
DAMPED HARMONIC-OSCILLATOR; GEOMETRIC PHASE-SHIFTS; CHEMICAL OSCILLATORS; VAN;
D O I
10.1103/PhysRevE.97.062209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Usage of a Hamiltonian perturbation theory for a nonconservative system is counterintuitive and, in general, a technical impossibility by definition. However, the time-independent dual Hamiltonian formalism for the nonconservative systems has opened the door for using various conservative perturbation theories for investigating the dynamics of such systems. Here we demonstrate that the Lie transform Hamiltonian perturbation theory can be adapted to find the perturbative solutions and the frequency corrections for the dissipative oscillatory systems. As a further application, we use the perturbation theory to analytically calculate the Hannay angle for the van der Pol oscillator's limit cycle trajectory when its parameters-the strength of the nonlinearity and the frequency of the linear part-evolve cyclically and adiabatically. For this van der Pol oscillator, we also numerically calculate the corresponding geometric phase and establish its equivalence with the Hannay angle.
引用
收藏
页数:11
相关论文
共 63 条
  • [12] Bloch A. M., 2003, NONHOLONOMIC MECH CO
  • [13] A geometric view of Hamiltonian perturbation theory
    Brizard, AJ
    [J]. PHYSICS LETTERS A, 2001, 291 (2-3) : 146 - 149
  • [14] Caldirola P., 1941, Il Nuovo Cimento, VI8, P393, DOI [10.1007/BF02960144, DOI 10.1007/BF02960144]
  • [15] Dynamics of elastic excitable media
    Cartwright, JHE
    Eguíluz, VM
    Hernández-García, E
    Piro, O
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2197 - 2202
  • [16] LIE TRANSFORM PERTURBATION-THEORY FOR HAMILTONIAN-SYSTEMS
    CARY, JR
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 79 (02): : 129 - 159
  • [17] Parametrically excited non-linearity in Van der Pol oscillator: Resonance, anti-resonance and switch
    Chakraborty, Sagar
    Sarkar, Amartya
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 254 : 24 - 28
  • [18] On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
  • [19] Unusual lienard-type nonlinear oscillator
    Chandrasekar, VK
    Senthilvelan, M
    Lakshmanan, M
    [J]. PHYSICAL REVIEW E, 2005, 72 (06):
  • [20] Equivalent linearization finds nonzero frequency corrections beyond first order
    Chattopadhyay, Rohitashwa
    Chakraborty, Sagar
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (06)