A new domain decomposition method for the compressible Euler equations

被引:5
作者
Dolean, Victorita
Nataf, Frederic
机构
[1] Univ Nice Sophia Antipolis, Lab Math JA Dieudonne, F-06108 Nice 02, France
[2] Univ Paris 06, CNRS, UMR 7598, Lab JL Lions, F-75005 Paris, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2006年 / 40卷 / 04期
关键词
D O I
10.1051/m2an:2006026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Ser. I 325 (1997) 1211 - 1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be conserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem ( mesh size, Mach number,...).
引用
收藏
页码:689 / 703
页数:15
相关论文
共 32 条