Energy costs of salt tolerance in crop plants

被引:354
作者
Munns, Rana [1 ,2 ,3 ]
Day, David A. [4 ]
Fricke, Wieland [5 ]
Watt, Michelle [6 ]
Arsova, Borjana [6 ]
Barkla, Bronwyn J. [7 ]
Bose, Jayakumar [8 ]
Byrt, Caitlin S. [8 ,9 ]
Chen, Zhong-Hua [10 ]
Foster, Kylie J. [11 ]
Gilliham, Matthew [8 ]
Henderson, Sam W. [12 ]
Jenkins, Colin L. D. [4 ]
Kronzucker, Herbert J. [13 ]
Miklavcic, Stanley J. [11 ]
Plett, Darren [13 ]
Roy, Stuart J. [14 ]
Shabala, Sergey [15 ,16 ]
Shelden, Megan C. [8 ]
Soole, Kathleen L. [4 ]
Taylor, Nicolas L. [17 ,18 ]
Tester, Mark [19 ]
Wege, Stefanie [8 ]
Wegner, Lars H. [20 ]
Tyerman, Stephen D. [8 ]
机构
[1] Univ Western Australia, Australian Res Council, Ctr Fxeellence Plant Energy Biol, Crawley, WA 6009, Australia
[2] Univ Western Australia, Sch Agr & Environm, Crawley, WA 6009, Australia
[3] CSIRO, Agr & Food, Canberra, ACT 2601, Australia
[4] Flinders Univ S Australia, Coll Sci & Engn, GPO Box 2100, Adelaide, SA 5001, Australia
[5] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland
[6] Forschungszentrum Juelich, Plant Sci, Inst Bio & Geosci, Helmholtz Assoc, D-52425 Julich, Germany
[7] Southern Cross Univ, Southern Cross Plant Sci, Lismore, NSW 2481, Australia
[8] Univ Adelaide, Australian Res Council, Ctr Excellence Plant Energy Biol, Sch Agr Food & Wine, Glen Osmond, SA 5064, Australia
[9] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2600, Australia
[10] Western Sydney Univ, Sch Sci & Hlth, Penrith, NSW 2751, Australia
[11] Univ South Australia, Phen & Bioinformat Res Ctr, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
[12] CSIRO, Agr & Food, Urrbrae, SA 5064, Australia
[13] Univ Melbourne, Sch Agr & Food, Fac Vet & Agr Sci, Melbourne, Vic 3010, Australia
[14] Univ Adelaide, Australian Res Council, Ind Transformat Res Hub Wheat Hot & Dry Climate, Sch Agr Food & Wine, Urrbrae, SA 5064, Australia
[15] Univ Tasmania, Tasmanian Inst Agr, Private Bag 54, Hobart, Tas 7001, Australia
[16] Foshan Univ, Int Ctr Environm Membrane Biol, Foshan 528000, Peoples R China
[17] Univ Western Australia, Australian Res Council, Ctr Excellence Plant Energy Biol, Sch Mol Sci, Crawley, WA 6009, Australia
[18] Univ Western Australia, Australian Res Council, Ctr Excellence Plant Energy Biol, Inst Agr, Crawley, WA 6009, Australia
[19] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div BESE, Thuwal 239556900, Saudi Arabia
[20] Karlsruhe Inst Technol, Inst Pulsed Power & Microwave Technol IHM, D-76344 Eggenstein Leopoldshafen, Germany
基金
澳大利亚研究理事会;
关键词
barley and wheat; energy costs; membrane transport; photosynthesis; respiration; root anatomy; salt tolerance; sodium and chloride transport; PROTON-PUMPING PYROPHOSPHATASE; NONSELECTIVE CATION CHANNELS; ROOT-GROWTH RESPONSE; PLASMA-MEMBRANE; SALINITY TOLERANCE; ALTERNATIVE OXIDASE; WATER TRANSPORT; MESEMBRYANTHEMUM-CRYSTALLINUM; MITOCHONDRIAL RESPIRATION; ARABIDOPSIS ROOTS;
D O I
10.1111/nph.15864
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+-ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
引用
收藏
页码:1072 / 1090
页数:19
相关论文
共 50 条
[41]   Salt tolerance mechanisms in Salt Tolerant Grasses (STGs) and their prospects in cereal crop improvement [J].
Roy, Swarnendu ;
Chakraborty, Usha .
BOTANICAL STUDIES, 2014, 55
[42]   Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation [J].
Bojorquez-Quintal, Emanuel ;
Velarde-Buendia, Ana ;
Ku-Gonzalez, Angela ;
Carillo-Pech, Mildred ;
Ortega-Camacho, Daniela ;
Echevarria-Machado, Ileana ;
Pottosin, Igor ;
Martinez-Estevez, Manuel .
FRONTIERS IN PLANT SCIENCE, 2014, 5 :1-14
[43]   Advances in salt tolerance molecular mechanism in tobacco plants [J].
Haiji Sun ;
Xiaowen Sun ;
Hui Wang ;
Xiaoli Ma .
Hereditas, 157
[44]   Biological features and regulatory mechanisms of salt tolerance in plants [J].
Li, Jingrui ;
Liu, Min .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (07) :10914-10920
[45]   Beneficial effects of silicon on salt and drought tolerance in plants [J].
Zhu, Yongxing ;
Gong, Haijun .
AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2014, 34 (02) :455-472
[46]   Advances in salt tolerance molecular mechanism in tobacco plants [J].
Sun, Haiji ;
Sun, Xiaowen ;
Wang, Hui ;
Ma, Xiaoli .
HEREDITAS, 2020, 157 (01)
[47]   Stress-tolerant Wild Plants: a Source of Knowledge and Biotechnological Tools for the Genetic Improvement of Stress Tolerance in Crop Plants [J].
Boscaiu, Monica ;
Donat, Pilar ;
Llinares, Josep ;
Vicente, Oscar .
NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2012, 40 (02) :323-327
[48]   Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants [J].
Yadav, Rakesh Kumar ;
Tripathi, Manoj Kumar ;
Tiwari, Sushma ;
Tripathi, Niraj ;
Asati, Ruchi ;
Chauhan, Shailja ;
Tiwari, Prakash Narayan ;
Payasi, Devendra K. .
LIFE-BASEL, 2023, 13 (07)
[49]   Macroevolutionary patterns of salt tolerance in angiosperms [J].
Bromham, Lindell .
ANNALS OF BOTANY, 2015, 115 (03) :333-341
[50]   Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants [J].
Avestan, Saber ;
Ghasemnezhad, Mahmood ;
Esfahani, Masoud ;
Byrt, Caitlin S. .
AGRONOMY-BASEL, 2019, 9 (05)