Energy costs of salt tolerance in crop plants

被引:354
作者
Munns, Rana [1 ,2 ,3 ]
Day, David A. [4 ]
Fricke, Wieland [5 ]
Watt, Michelle [6 ]
Arsova, Borjana [6 ]
Barkla, Bronwyn J. [7 ]
Bose, Jayakumar [8 ]
Byrt, Caitlin S. [8 ,9 ]
Chen, Zhong-Hua [10 ]
Foster, Kylie J. [11 ]
Gilliham, Matthew [8 ]
Henderson, Sam W. [12 ]
Jenkins, Colin L. D. [4 ]
Kronzucker, Herbert J. [13 ]
Miklavcic, Stanley J. [11 ]
Plett, Darren [13 ]
Roy, Stuart J. [14 ]
Shabala, Sergey [15 ,16 ]
Shelden, Megan C. [8 ]
Soole, Kathleen L. [4 ]
Taylor, Nicolas L. [17 ,18 ]
Tester, Mark [19 ]
Wege, Stefanie [8 ]
Wegner, Lars H. [20 ]
Tyerman, Stephen D. [8 ]
机构
[1] Univ Western Australia, Australian Res Council, Ctr Fxeellence Plant Energy Biol, Crawley, WA 6009, Australia
[2] Univ Western Australia, Sch Agr & Environm, Crawley, WA 6009, Australia
[3] CSIRO, Agr & Food, Canberra, ACT 2601, Australia
[4] Flinders Univ S Australia, Coll Sci & Engn, GPO Box 2100, Adelaide, SA 5001, Australia
[5] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland
[6] Forschungszentrum Juelich, Plant Sci, Inst Bio & Geosci, Helmholtz Assoc, D-52425 Julich, Germany
[7] Southern Cross Univ, Southern Cross Plant Sci, Lismore, NSW 2481, Australia
[8] Univ Adelaide, Australian Res Council, Ctr Excellence Plant Energy Biol, Sch Agr Food & Wine, Glen Osmond, SA 5064, Australia
[9] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2600, Australia
[10] Western Sydney Univ, Sch Sci & Hlth, Penrith, NSW 2751, Australia
[11] Univ South Australia, Phen & Bioinformat Res Ctr, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
[12] CSIRO, Agr & Food, Urrbrae, SA 5064, Australia
[13] Univ Melbourne, Sch Agr & Food, Fac Vet & Agr Sci, Melbourne, Vic 3010, Australia
[14] Univ Adelaide, Australian Res Council, Ind Transformat Res Hub Wheat Hot & Dry Climate, Sch Agr Food & Wine, Urrbrae, SA 5064, Australia
[15] Univ Tasmania, Tasmanian Inst Agr, Private Bag 54, Hobart, Tas 7001, Australia
[16] Foshan Univ, Int Ctr Environm Membrane Biol, Foshan 528000, Peoples R China
[17] Univ Western Australia, Australian Res Council, Ctr Excellence Plant Energy Biol, Sch Mol Sci, Crawley, WA 6009, Australia
[18] Univ Western Australia, Australian Res Council, Ctr Excellence Plant Energy Biol, Inst Agr, Crawley, WA 6009, Australia
[19] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div BESE, Thuwal 239556900, Saudi Arabia
[20] Karlsruhe Inst Technol, Inst Pulsed Power & Microwave Technol IHM, D-76344 Eggenstein Leopoldshafen, Germany
基金
澳大利亚研究理事会;
关键词
barley and wheat; energy costs; membrane transport; photosynthesis; respiration; root anatomy; salt tolerance; sodium and chloride transport; PROTON-PUMPING PYROPHOSPHATASE; NONSELECTIVE CATION CHANNELS; ROOT-GROWTH RESPONSE; PLASMA-MEMBRANE; SALINITY TOLERANCE; ALTERNATIVE OXIDASE; WATER TRANSPORT; MESEMBRYANTHEMUM-CRYSTALLINUM; MITOCHONDRIAL RESPIRATION; ARABIDOPSIS ROOTS;
D O I
10.1111/nph.15864
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+-ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
引用
收藏
页码:1072 / 1090
页数:19
相关论文
共 50 条
[32]   Improving salinity tolerance in crop plants: a biotechnological view [J].
Ahmad Arzani .
In Vitro Cellular & Developmental Biology - Plant, 2008, 44 :373-383
[33]   LbMYB48 positively regulates salt gland development of Limonium bicolor and salt tolerance of plants [J].
Han, Guoliang ;
Qiao, Ziqi ;
Li, Yuxia ;
Yang, Zongran ;
Zhang, Ziwei ;
Zhang, Yuanyuan ;
Guo, Jinjiao ;
Liu, Lili ;
Wang, Chengfeng ;
Wang, Baoshan .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[34]   Functional Genomics of Salt and Drought Stress Tolerance in the Temperate Crop Apple (Malus domestica) [J].
Verma, Swati ;
Dubey, Namo ;
Mishra, Vishnu ;
Kumar, Subhash ;
Sharma, Rajnish ;
Sharma, Sneh ;
Sarkar, Ananda Kumar ;
Thakur, Ajay Kumar .
JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (11) :3941-3957
[35]   Role of sodium and hydrogen (Na+/H+) antiporters in salt tolerance of plants: Present and future challenges [J].
Khan, Mohammad Sayyar .
AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (63) :13693-13704
[36]   Improving crop salt tolerance through soil legacy effects [J].
Ma, Yue ;
Zheng, Chunyan ;
Bo, Yukun ;
Song, Chunxu ;
Zhu, Feng .
FRONTIERS IN PLANT SCIENCE, 2024, 15
[37]   Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II [J].
Sneh L. Singla-Pareek ;
Sudesh Kumar Yadav ;
Ashwani Pareek ;
M. K. Reddy ;
S. K. Sopory .
Transgenic Research, 2008, 17 :171-180
[38]   Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II [J].
Singla-Pareek, Sneh L. ;
Yadav, Sudesh Kumar ;
Pareek, Ashwani ;
Reddy, M. K. ;
Sopory, S. K. .
TRANSGENIC RESEARCH, 2008, 17 (02) :171-180
[39]   Post-translational regulation of the membrane transporters contributing to salt tolerance in plants [J].
Gupta, Amber ;
Shaw, Birendra Prasad ;
Sahu, Binod Bihari .
FUNCTIONAL PLANT BIOLOGY, 2021, 48 (12) :1199-1212
[40]   Antarctic rhizobacteria improve salt tolerance and physiological performance of the Antarctic vascular plants [J].
Gallardo-Cerda, Jorge ;
Levihuan, Juana ;
Lavin, Paris ;
Oses, Romulo ;
Atala, Cristian ;
Torres-Diaz, Cristian ;
Cuba-Diaz, Marely ;
Barrera, Andrea ;
Molina-Montenegro, Marco A. .
POLAR BIOLOGY, 2018, 41 (10) :1973-1982